Journal of Madenat Alelem University College

www.jmauc.edu.iq
E-mail: jmauc@mauc.edu.iq
TEL: 7801099835

Publisher:
Madenat Alelem University College

www.mauc.edu.iq

رقم الإيداع في دار الكتب والوثائق 1333 لسنة 2009
Editor in chief

Dr. Shaker M. Al-Jobori

Deputy editor in Chief

Dr. Jabbar F. Al-Maadhidi

Editorial board

Lect. Isam Atta Ajaj
Dr. Saeed Selman Kamoon
Dr. Mousa M. Al-jobori
Dr. Sabah Abdul Latif Nassif
Dr. Usama Aladdin Ibrahim
Dr. Saad Abdulridha Makki
Dr. Abd Almonem K. Hammadi
Dr. Ali Mahdi
Dr. Hussain H. Ahmed
Dr. Farooq Abdul Azeez Mohammed
Dr. Ayaïd K. Zgair

Advisaori Board

Prof. Dr. AbdolHazim Al-Rawi, Alrashed University
Prof. Dr. TawficNajim, Al-mammon University College
Prof. Dr. Ghazi Faisal, Al-Nahrin University
Prof. Dr. Nabil Hashim, Babel University
Dr. Ayad A. Al-Taweel, Ministry of Science and Technology
Assis. Prof. Ahmed Mossa, Technical University
Dr. Ammer M. Ali, MadentAlelem College
Dr. IbrahimKhammas, MadentAlelem College
Submitted articles to the Journal of Madinat Al-Elem University College can be published in all fields related to the Academic Departments of the College (Biology, Law, programming Engineering Sciences, Computer Techniques Engineering Law, Medical Physics, Civil Engineering, and Accounting).

Written request for publication and signing a consent form to publish must be for articles which have not been published or submitted for publication to other journals. Three copies with CD are needed. Manuscripts should be typed on: A4 white paper, double spaced, written in Times New Roman font size 14. Margins should be 3cm from top, bottom, left and right. The main title should be in: bold Times New Roman font size 14. Author names should be written in the following sequence: first name, middle name, the family name, followed by the names of departments and institutions of work. A footnote accompanies the first page stating the full address of correspondence author.

Articles need to contain the following items:
- Abstract in English and Arabic not more than 300 words.
- Article includes the following items: Introduction, Materials and Methods, Results and Discussion, Conclusion and References.
- References should be numbered in the text according to the sequence appeared in the text and listed in order.
- Tables and figures should be appropriately titled with size not exceed an A4 page.

The editor reserves the right to reject or accept any article submitted.

Publication charges: Each accepted paper is required to pay the publication charge (100,000 Iraqi dinars). Five thousands Iraqi dinar are requested for each extra page extra printed page.
Contents

1- Function of thyroid gland of normal healthy pregnant women during the second trimester of pregnancy.

Noor Salman Dalis, Sami Z. Akrim, Alaa Saber Shihab, Mossa M. Marbut.

2- The use of Interleukin -10 as a biomarker for diagnosis of viral hepatitis type C Infections and related liver function in beta-thalassemic major patients.

Sarah M. Mahmoud, Zainb ER. Abass, Assis. Prof. Dr. Nihad Abdulhussain Jafar.

3- A Photoelastic Study of stresses in the femure

Dr. Jamal A. Hassan, College of Engineering, Al-Nahrain University
Dr. Sadiq J. Abass, College of Engineering, Al-Nahrain University
Eng. Zainabmajid, Electrical Engineering Technical College, Middle Technical University

4- Sensors Data Encryption Using TSFS Algorithm

Shatha Habeeb, Dr. Rehab F. Hassan

5- Evanescent Field Mach-Zehnder Interferometer Sensor for Concentration Measurement

Ruaa Khalil Musa1, Salah Al deen Adnan2, Ali Mahdi Hammadi3

6- Single phase Cascaded H-Bridge Multilevel Inverter study and comparison of different levels
Asst.prof.Jameel Kadhum Abed, Muhamnad Jabbar Munati, Bassam Mohammed Yaseen

7-Design of Maximum power Tracking System by Automatic Control of Solar Cell Panel to the Sun Direction
Kader H.A. Al-Shara

8-Creating continuous model review for material cement in Kirkuk plant when fuzzy and randomly demand with acceleration (speed up) waiting period by application
Abdul muneem K. Hamadi Alshokri
Function of thyroid gland of normal healthy pregnant women during the second trimester of pregnancy.

Noor Salman Dalis, Ass. prof. Dr. Sami Z. Akrin, Alaa Saber Shihab, Prof. Dr. Mossa M. Marbut

Dept of Physiology, College of Medicine, Tikrit University.

Mossa 1955p@yahoo.com

Abstract:

Background: During pregnancy, the mother’s thyroid gland undergoes many physiological changes, leading to an increase in thyroid volume which is often associated with higher urinary iodine excretion. Aim of study: To study the levels of thyroid function in second trimester of pregnancy. Subjects and methods: A longitudinal study was conducted in Gynecological clinics at Alalm city Salah din Government from the 1st of August 2016 to the end of march 2017. Ninety pregnant women were participated in the study. About 10 ml of venous blood was drawn from pregnant woman. Samples were collected between (9-11) A.M., after overnight fasting, the blood was drawn from the capital vein using disposable needles and syringes with using tourniquet in all cases. The blood was allowed to clot in plain tubes at room temperature. The serum was aspirated after centrifugation (at 3000 rpm) for 30 minutes, divided into liquates in plastic tubes and stored at deep freeze (-18°C) until the time of estimation. Result: The result show that, there is a high significant in T3 and T4 there are no significant difference between three month in TSH concentration as compare to its trimester. In other hand, there is no significant difference (p≤0.001) among pregnant of cholesterol, LDL and VLDL concentration. but there is there is significant difference (p≤0.001) among pregnant of triglyceride and HDL value when compare to different month. Conclusion: We calculated clinically relevant second trimester values for thyroid function tests through pregnancy to facilitate improved management of thyroid disease in pregnancy in our local population.

Key Words: Second trimester, Pregnancy, thyroid hormones, Lipid profile.
وظيفة الغدة الدرقية في النساء الحوامل السليمات طبيعياً خلال الثلث الثاني من الحمل.

نور سلمان دلس، ا.م.د سامي زيار أكرم، ا.م.د موسى محمود مربط
فرع الفسلجة، كلية الطب، جامعة تكريت

الخلاصة المقدمة: خلال فترة الحمل، تتعرض الغدة الدرقية للكثير من التغييرات الفسيولوجية، مما يؤدي إلى زيادة في حجم الغدة الدرقية والتي غالباً ما ترتبط بزيادة إفراز اليوبر في البول. الهدف من الدراسة: دراسة مستويات وظائف الغدة الدرقية في الثلث الثاني من الحمل.

طرق البحث: تم إجراء دراسة طولية في عيادات أمراض النساء في مدينة علم بمدينة صلاح الدين من 1 أغسطس 2016 حتى نهاية مارس 2017. شاركت 90 سيدة في هذه الدراسة. تم شرب حوالي 10 مل من الدم الوريدي من امرأة حامل. تم جمع العينات بين (9-11) صباحاً، بعد صيام بين عشية وضحاها، تم سحب الدم من الوريدي باستخدام الحقن الطبي. كان يسمح للدم بالتجلط في أنابيب عادية عند درجة حرارة الغرفة. تم رش المصل بعد الطرد المركزي (عند 3000 دورة في الدقيقة) لمدة 30 دقيقة، مقسومة إلى سوائل في آتيبلاستيكية وتخزينها في تجميد عميق حتى وقت التقدير. النتائج: تظهر النتيجة لا يوجد فرق كبير بين ثلاثة أشهر في تركيز T3 و T4 أن هناك درجة عالية من الأهمية في TSH بين الحوامل من تركيز (0.01 p≤) بالمقارنة مع الثلث الأول. من ناحية أخرى، لا يوجد فرق كبير بين الحوامل من قيمة الدهون (0.01 p≤) ولكن هناك فرق كبير عند المقارنة بشهير مختلف. الخلاصة: حسبنا قيم الفصل الثاني ذات الصلة سريرياً القادمة، لا اختلافات وظيفة الغدة الدرقية خلال الحمل لتسهيل إدارة مرض الغدة الدرقية في الحمل في السكان المحليين.

الكلمات المفتاحية: الثلث الثاني- الحمل، مرتسم الدهون وظيفة الغدة الدرقية.
Introduction:

Pregnancy trimester were define according to the American College of Obstetricians and Gynecologist’ definition: Frist trimester (1-3) weeks, second trimester (14-26) weeks, and third trimester (27) weeks. During pregnancy, the extrathyroid T4 pool is increase in order to maintain hemostasis of the free hormone concentration, so that at the beginning of pregnancy the thyroid adjustment is continuous and T4 and TBG levels are constantly change. During pregnancy, the mother’s thyroid gland undergoes many physiological changes, leading to an increase in thyroid volume which is often associated with higher urinary iodine excretion. It is also associated with the formation of new thyroid nodules with the histological features of nodular hyperplasia. Very early in pregnancy, the increase in estrogen levels causes an approximate doubling in thyroxine binding globulin (TBG) that can lead to an increases in total T4 concentration and a reduced free fraction. In healthy women, the final effect consists of a significant increase in the total thyroxine pool, mainly in the first trimester.

Evident maternal thyroid failure during the first half of pregnancy has been associated with several pregnancy complications including preeclampsia, premature labor, fetal death and low birth weight and intellectual impairment in the offspring. Most of the changes in maternal metabolism and inflammatory status are considered to be normal physiological responses to support fetal growth and development. These changes typically return to pre-pregnancy states soon after delivery. These adverse pregnancy outcomes are associated with increased future
risk of diabetes and cardiovascular disease both in mothers and offspring, though the extent to which these are causal or reflect pre-existing maternal risk is unclear [7].

The **Aim** of study is to study the levels of thyroid function in second trimester of pregnancy.

Subjects & methods:

A longitudinal study was conducted on Gynecological clinics at Alalm city Salahedin Government from the 1st of August 2016 to the end of march 2017. Ninety pregnant women were participated in the study. healthy pregnant women, aged between 18 - 41 years. About 10 ml of venous blood was drawn from pregnant woman. Samples were collected between (9-11) A.M., after overnight fasting, the blood was drawn from the capital vein using disposable needles and syringes with using tourniquet in all cases. Two ml blood was mixed with anticoagulant EDTA for analyzing hematological parameters. Four ml of clotted sample was used to determine the levels of thyroid hormone and four ml for determine lipid profile. The blood was allowed to clot in plain tubes at room temperature. The serum was aspirated after centrifugation (at 3000 rpm) for 30 minutes, divided into liquates in plastic tubes and stored at (-20°C) until the time of estimation. VIDAS Techniques used for estimated thyroid hormones and Cobas c 111 analyzer used for estimated lipid profile.

Results

The age range was (18 to 41) years. Regarding T3: there is a high significant differences (p ≤ 0.007) in mean and stander deviation of T3 value of pregnant in month one (1.626 ± 0.325),
month two (2.187 ± 0.572) and month three (2.581 ± 0.618), as show in table (1).

There is 37.23% increase in concentration of T3 compare to normal range. Regarding T4: there is a high significant reduction (p≤ 0.005) in mean T4 value of pregnant in month one (140.00±34.81), month two (121.43±32.54) month three (97.77±18.58), As show in table (1).

There is 30.2% reduction in concentration of T4 compare to normal range. Regarding TSH: there are no stander differences among three month (P>0.652) in TSH value month one (1.127 ± 0.734), month two (1.265 ± 0.542) and month three (1.266 ± 0.624). As show in table (1).

There is 10.98% change in concentration of TSH compare to normal range. Regarding cholesterol: there is no significant difference (p≤0.001) among pregnant of cholesterol value in month one (198.67 ± 36.47mg/dl), month two (209 ±29.04 mg/dl) and month three (193.73 ± 26.55), As show in table (2).

Regarding triglyceride: there is significant difference (p≤0.052) among pregnant of triglyceride value in month one (152.40 ± 40.45 mg/dl), month two (170.63 ±35.12 mg/dl) and month three (168.93 ±32.75 mg/dl), As show in table (2).

Regarding HDL: there is significant difference (p≤0.001) among pregnant of HDL value in month one (59.65± 11.78 mg/dl), month two (64.16±14.11mg/dl) and month three (54.26±13.34 mg/dl), As show in table (2).

Regarding LDL: there is no significant difference (p≤0.866) among pregnant of cholesterol
value in month one (107.66 ±25.59mg/dl), month two (108.37±25.32mg/dl) and month three (104.97± 26.85mg/dl), As show in table (2).

Regarding VLDL: there is no significant difference (p≤0.117)

Regarding HB: there is highly significant difference (P≤0.001) in HB among three months month one (10.123± 1.040gm/dl), month two (9.403 ± 1.144 mg/dl) and month three (10.727±1.562mg/dl), as show in table (4.3) & figure (1).

In present study we found elevated T3, which was significant and decrease in T4 value and TSH is stay stable in second trimester as compared to other trimester.

Kumar et al16 measured serum levels of T3, T4, and TSH in 124 pregnant women that were apparently normal, healthy young primigravidas with no known metabolic disorders and normal carbohydrate gestational intolerance test. They found that mean TT3 increased during the second trimester and then declined in the third trimester compared to the first trimester. This is in agreement to our study where TT3 level increased the Kumar et al. also showed mean TT4 level rose among pregnant of cholesterol value in month one (30.77 ±7.91mg/dl) , month two (34.12±7.02) and month three (34.68±8.48mg/dl), As show in table (2).

Discussion

In present study we found elevated T3, which was significant and decrease in T4 value and TSH is stay stable in second trimester as compared to other trimester.

Kumar et al measured serum levels of T3, T4, and TSH in 124 pregnant women that were apparently normal, healthy young primigravidas with no known metabolic disorders and normal carbohydrate gestational intolerance test. They found that mean TT3 increased during the second trimester and then declined in the third trimester compared to the first trimester. This is in agreement to our study where TT3 level increased the Kumar et al. also showed mean TT4 level rose
in the second trimester and then decreased during the third trimester. Kumar et al. also found that the mean of TSH levels rising progressively through the trimesters of pregnancy.\[8\]

Reference:

and women’s future cardiovascular health: an underused opportunity to improve women’s health?

Table (1) the mean and standard deviation of thyroid hormone

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.626 ± 0.325</td>
<td>2.187 ± 0.572</td>
<td>2.581 ± 0.618</td>
<td>0.001</td>
</tr>
<tr>
<td>T4</td>
<td>140 ± 34.81</td>
<td>121 ± 32.54</td>
<td>97.77 ± 18.58</td>
<td>0.001</td>
</tr>
<tr>
<td>TSH</td>
<td>1.127 ± 0.734</td>
<td>1.265 ± 0.542</td>
<td>1.266 ± 0.624</td>
<td>NS</td>
</tr>
</tbody>
</table>

Table (2) The mean & SD of lipid profile

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>198.67 ± 36.47</td>
<td>209 ± 29.04</td>
<td>193.73 ± 26.55</td>
<td>NS</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>152.40 ± 40.45</td>
<td>170.63 ± 35.12</td>
<td>168.93 ± 32.75</td>
<td>0.052</td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>59.65 ± 11.78</td>
<td>64.16 ± 14.11</td>
<td>54.26 ± 13.34</td>
<td>0.017</td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>107.66 ± 25.59</td>
<td>108.37 ± 25.32</td>
<td>104.97 ± 26.85</td>
<td>NS</td>
</tr>
<tr>
<td>VLDL mg/dl</td>
<td>30.77 ± 7.91</td>
<td>34.12 ± 7.02</td>
<td>34.68 ± 8.48</td>
<td>NS</td>
</tr>
</tbody>
</table>
Table (3) the mean and standard deviation of Hemoglobin and pack cell volume (PCV) in the 1st, 2nd and 3rd month of pregnancy.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB g/dl</td>
<td>10.123 ± 1.040</td>
<td>9.403 ± 1.144</td>
<td>10.727 ± 1.562</td>
<td>0.001</td>
</tr>
<tr>
<td>PCV %</td>
<td>33.553 ± 3.431</td>
<td>31.230 ± 3.761</td>
<td>28.060 ± 4.645</td>
<td>0.001</td>
</tr>
</tbody>
</table>
The use of Interleukin -10 as a biomarker for diagnosis of viral hepatitis type C Infections and related liver function in beta-thalassemic major patients.

Sarah M. Mahmoud, Assis prof. Dr. Zainb ER. Abass , Assis. Prof. Dr. Nihad Abdulhussain Jafar.

Dept. of medical microbiology, College of Medicine, Tikrit University.

E-mail Sarah1992@yahoo.com

Abstract

Introduction; IL-10 is an important cytokine in the pathogenesis of both infectious and inflammatory processes. The central and necessary role of IL-10 in protecting against severe or inflammatory pathology has been clearly shown in models of experimental infection with intracellular pathogens using IL-10 genetically deficient mice. IL-10 is a multifunctional cytokine with potent immunoregulatory and anti-inflammatory properties. It prevents the release and function of a number of proinflammatory cytokines. It has been postulated that inadequate levels of IL-10 can determine long-term escape of pathogens from immune control and give rise to persistent infections. The aim of the study is to use of Interleukin -10 as a biomarker for diagnosis of viral hepatitis type C Infections and its relation to liver enzymes in thalassemia patients with viral hepatitis. Patients and methods: A cross sectional study was done on thalassemia patients in gastrointestinal center – Medical city directory in Baghdad from the beginning of March to the end of August 2017. A total of 80 subjects were participated in the present study, (45 thalassemia patients without hepatitis and 35 patients with Thalassemia who receive regular blood transfusion and diagnosed having viral hepatitis type C and were participated in the study. liver enzymes, and IL-10. Alanine transaminase (ALT), and aspartate transaminase (AST) were measured according to standard procedures. Result; there is significant increase in the concentration of IL-10 in the serum of HCV positive patients as compare with control patients. Also, there were significant increase in serum liver enzymes (ALT and AST and ALP), in patients with positive HCV, as compare to control with those with non-viral thalassemia hepatitis.

Key words; HCV, Liver enzymes, IL-10, thalassemia patients.
استعمال الإنترلوكين -10 كعلامة بيولوجية لتشخيص التهاب الكبد الفايروسي و ما يتعلق بها من نشاط إنزيمات الكبد لدى مرضى التلاسيميا نوع بيتا الكبيرة المصابين بالتهاب الكبد الفيروس.

سارة موسى محمود، أ.م.د. زينب ارزيج عباس أ.م.د. نهاد عبد الحسين جعفر.
قسم الأحياء المجهرية الطبية، كلية الطب، جامعة تكريت.

الخلاصة:
الإنترلوكين -10 هو سيتوكين متعدد الوظائف منظم للمนำมาة قوي ولله خصائص مضادة للالتهابات. وينمنع تحرر و الإفراج عن وظيفة عدد من السيتوكينات المضادة للالتهابات. وقد افترض أن مستويات غير كافية من إنترلوكين -10 يمكن أن تحدد الهروب على المدى الطويل من مسببات الأمراض من السيطرة المناعية وتؤدي إلى الإصابات المستمرة. الهدف من الدراسة هو تحديد تركيز الإنترلوكين -10 وعلاقته بإنزيمات الكبد في مرضى التلاسيميا المصابين بالتهاب الكبد الفيروسى الوائني. المرضى وطرق العمل: دراسة مقطعية أجريت لمرضى التلاسيميا المحالين إلى مركز الجهاز الهضمي و أمراض الكبد - دائرة مدينة الطب في بغداد. بدات الدراسة من بداية مارس وحتى نهاية أغسطس 2017. و شارك في الدراسة 80 شخصا، (45 مريضا بالثالاسيميا بدون التهاب الكبد و 35 مريضا مصابا بالثالاسيميا مع التهاب الكبد الفيروسي نوع سي. وقد تم قياس إنزيمات الكبد و الانتيرلوكين -10 . النتائج: هناك زيادة كبيرة في تركيز الإنترلوكين -10 في مصل مرضى التهاب الكبد الفيروسى نوع سي مقارنة مع مرضى السيطرة. كذلك هنالك زيادة معنوية لمستوى إنزيمات الكبد في المرضى الذين يعانون مرضى التهاب الكبد الفيروسى نوع سي مقارنة مع السيطرة الذين لا يعانون من التهاب الكبد الفيروسية.

الكلمات المفتاحية: الإنترلوكين -10، إنزيمات الكبد، مرضى التلاسيميا
Introduction

In the United States, viral hepatitis is most commonly caused by hepatitis A virus (HAV), hepatitis B virus (HBV), and hepatitis C virus (HCV). These three viruses can all result in acute disease with symptoms of nausea, abdominal pain, fatigue, malaise, and jaundice. Furthermore, chronic hepatitis carriers remain infectious and may transmit the disease for many years.\(^{(1,2)}\).

HCV can be transmitted parenterally, perinatally, and sexually. Transmission occurs by percutaneous exposure to infected blood and plasma. The virus is transmitted most reliably through transfusion of infected blood or blood products, transplantation of organs from infected donors, and sharing of contaminated needles among IV drug users.\(^{(3)}\).

Hepatitis is an infection of the liver caused by several viruses, the most common of which are Hepatitis A, B and C. Both Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) spread mainly through contaminated blood, blood products, sexual contact and contaminated needles.\(^{(1,4)}\).

Interleukin (IL)-10 is a member of the IL-10 cytokine family and one of the most crucial suppressors and regulators of the immune system. IL-10 and other members of the IL-10–like family have been shown to confer hepatoprotection \(^{(2,3)}\). IL-10 family cytokines are categorized into three subgroups based primarily on their biological functions. The first group contains only IL-10 itself which mainly represses excessive inflammatory responses. The second group, namely IL-20 subfamily cytokines, is composed of IL-19, IL-20, IL-22, IL-24, and IL-26 \(^{(4,5)}\). IL-10, protects epithelial cells from invasion by extracellular pathogens such as...
bacteria and yeast. Also, they enhance tissue remodeling and wound-healing activities, which help to maintain tissue integrity and restore homeostasis of epithelial layers during infection and inflammatory responses. (6)

Finally, the last group is the type III IFN group (or IFN λs), which contains cytokines IL-28A, IL-28B, and IL-29 (7). IL-10 is a multifunctional cytokine with potent immunoregulatory and anti-inflammatory properties. It prevents the release and function of a number of proinflammatory cytokines (8).

It has been postulated that inadequate levels of IL-10 can determine long-term escape of pathogens from immune control and give rise to persistent infections (9). Therefore, the physiological role of IL-10 during infectious diseases is likely to reduce tissue damage resulting from the unfavorable and excessive effects of inflammation. However, an inappropriate production of IL-10 during a virulent infection may compromise the effectiveness of the immune system, allowing fulminant or persistent infection (3,4).

Hepatitis is an infection of the liver caused by several viruses. The most common were Hepatitis A, B and C. Both HBV and Hepatitis C Virus (HCV) spread mainly by contaminated blood, blood products, sexual contact and contaminated needles (10).

Hepatitis C virus (HCV) is one of the most important etiologic agents of postransfusional hepatitis and a common cause of chronic hepatitis, cirrhosis and hepatocarcinoma (10, 11).

Approximately, two billion people in the world have been infected by Hepatitis B virus (HBV), 350 million of whom are chronic carriers of the virus[1,2]. Worldwide HBV isolates have been classified into eight genotypes: A, B, C, D, E, F, G and H. The eight genotypes have
a characteristic geographical distribution, \cite{12}. Several studies have revealed the association of HBV genotypes with the severity of chronic liver disease, but the results are not consistent, \cite{12-13}.

The aim of the study is to evaluate the relation between of some biochemical markers in viral hepatitis C patients namely AST, ALT, alkaline phosphatase.

Subjects and methods

A cross sectional study was done in gastrointestinal center – Medical city directory on Thalassemia patients in Baghdad from the beginning of March to the end of August 2017. One hundred and forty patients referred to gastroenterology center (GIT) in medical city in Baghdad for further investigation for detection of viral hepatitis and other liver diseases.

Only eighty patients with Beta Thalassemia patients were completed the whole investigation and participated in the study. 45 neo diagnosed and untreated thalassemia patients affected by HCV-related chronic hepatitis.

A total of 80 subjects were participated in the present study, (35 thalassemia patients without viral hepatitis and 45 thalassemia patients who receive regular blood transfusion and diagnosed having viral hepatitis were participated in the study.

An informed written consent was obtained from every subject before taking blood sample.

Excluded Criteria;

Patients with liver diseases other than HCV, or other medical diseases such as; hypertension, diabetes mellitus, endocrinal disorders or neurological diseases, autoimmune diseases, alcohol abuse, and drug induced
liver injury were excluded. In addition, patients with evidence of other chronic or acute infective processes (altered white blood cells count, temperature, urinary tract infection, airway infections) were excluded. Or patients receiving antiviral drugs were also, excluded from this study.

Diagnosis of patients was based on clinical (medical history, physical examination), instrumental (ultrasonography), and laboratory investigations (serum HCV antibodies, HCV-RNA and liver function tests) data.

Age and body weight was recorded. Also, about 5 ml of venous blood was drawn from all subjects. The blood lifted to clotted then centrifuged to separate the serum. The separated serum kept in deep freezing, until collection of all samples to be used in measurement of liver enzymes, and IL-10. Alanine transaminase (ALT= SGPT), and aspartate transaminase (AST= SGOT) were measured according to standard procedures.(14).

The circulating IL-10 levels were determined using a quantitative sandwich ELISA according to the manufacturer`s instructions (R &D systems, Germany). ELISA plate wells were coated with 100 μl/well of anti-human IL-10 capture antibody in coating buffer and incubated overnight at 4°C. After incubation, excess coating buffer was discarded and wells blocked with 100 μl/well of blocking buffer (1% BSA in PBS) followed by incubation at 37°C for 1 h. Plates were washed 3 times in washing buffer (0.05% tween-20 in PBS), 100 μl of plasma samples and IL-10 standards diluted in buffer were added to appropriate wells, and
incubation at 37°C for 2 h followed. Plates were washed as before and detector biotinylated antibody (100 μl) added to each well followed by incubation at 37°C for 1 h, then washed as before. Streptavidin-HRP (Horse-Radish Peroxidase) conjugate (100 μl) was added to each well followed by incubation of plates at 37°C for 1 h, and washing as before. Substrate solution, 100 μl was added to each well and plates incubated at room temperature for 15 minutes for color development. Stop solution (50 μl) was added to each well and plates were read at 450 nm, \(^{(15)}\).

Detection of viral markers:-

1-ELISA for detection of hepatitis B surface antigen (HBsAg), also ELISA was used for detection of antibodies for HCV (screening test, \(^{(16,17)}\)).

SPSS was used for statistical analysis was used. All data were presented as Mean and Slandered deviation (SD). Unpaired student T test was used to compare between means of variables. P value less than 0.05 or 0.01 was used as significant value.

Results

Thalassemia Patients distributed into two groups;

Group 1 consist of 45 thalassemia patients without liver hepatitis as control group, and 35 thalassemia patients diagnosed as having viral hepatitis type c (patients with positive HCV).
Table 1 The age and body weight of all patients' HCV patients (35 patients) and control (45 patients).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (45)</th>
<th>HCV patients (35 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>30.14 ± 9.2</td>
<td>22.3 ± 6.5</td>
</tr>
<tr>
<td>Body weight (KG)</td>
<td>7.8 ± 54.5</td>
<td>46.9 ± 6.6</td>
</tr>
<tr>
<td>IL-10 (pg./ml)</td>
<td>8.74 ± 2.5</td>
<td>33.62 ± 7.3</td>
</tr>
</tbody>
</table>

In table 1, there is significant increase in the concentration of IL-10 in HCV patients (33.62 ± 7.3) as compared with control patients (8.74 ± 2.5).

In addition, by comparing the mean level of liver enzymes (ALT and AST), ALP, in patients with +ve Anti-HCV as compared to control with those with non-viral hepatitis, (Table 2).

Table 2 showed a significant increase in AST enzyme activity (GOT) in the thalassemia patients suffering viral hepatitis (HCV=47.3 ± 6.54 UI/L) as compare with thalassemia patients without viral hepatitis, (23.6 ± 3.4 UI/L).

Moreover, there is significant increase in ALT enzyme activity (GPT) in the thalassemia patients suffering viral hepatitis (HCV=70.56 ± 8.2 UI/L) as compare with thalassemia patients without viral hepatitis, (24.6 ± 2.15 UI/L).

Also, there is significant increase in ALP activity in the thalassemia patients suffering viral hepatitis (HCV=224.6 ± 61.1 UI/L) as compare with thalassemia patients without viral hepatitis, (54.43 ± 4.4 UI/L).
Furthermore, there is significant increase in total bilirubin concentration in the thalassemia patients suffering viral hepatitis (HCV=2.68 ± 0.31 mg/dl) as compare with thalassemia patients without viral hepatitis, (0.51 ± 0.09 mg/dl).

Table 2 Show the concentration of GOT, GPT, ALP and total bilirubin in thalassemia patients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (45)</th>
<th>HCV patients (35 patients)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (SGOT) (UI/I)</td>
<td>23.6 ± 3.4</td>
<td>47.3 ± 6.54</td>
<td>0.05</td>
</tr>
<tr>
<td>ALT (SGPT) (UI/I)</td>
<td>24.6 ± 2.15</td>
<td>70.56 ± 8.2</td>
<td>0.01</td>
</tr>
<tr>
<td>ALP (UI/I)</td>
<td>54.43 ± 4.4</td>
<td>224.6 ± 61.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
<td>0.51 ± 0.09</td>
<td>2.68 ± 0.31</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Forty percent (40% of thalassemia patients suffered from jaundice and 43% had thalassemia features. All patients were on regular blood transfusion with a mean frequency of 12.94 ± 4.31 times per year. There was a significant decrease in the frequency of blood transfusion per year in patients who underwent splenectomy, compared to the pre-splenectomy period (P ≤ 0.05).
Discussion

In the present study, there was a significant increase in the concentration of IL-10 in the serum of HCV patients as compared with control patients.

Previous human studies have investigated this balance using neutralizing antibodies against IL-10 in vitro. HCV-specific T cell responses in chronically infected patients were restored by blocking IL-10, resulting in increased IFN-γ production, (18, 19).

Previous study was found in chronically HCV infected patients significant increase in IL-10 and IL-4, and they suggested that Th2 response during chronic HCV infection and this finding is concordant with the present study, (19, 20).

The significant increase in the concentration of IL-10 in the serum of viral hepatitis patients of the present study (HCV patients), may be these patients have a chronic state of liver damage by the virus. This result agree with previous study which done HCV patients who found there were significant increase in the concentration of IL-10 and IL-18 in the serum of chronic hepatitis C patients, (21).

In study done in Baghdad by Mahmood (2005), who found a significant increase in the mean of levels of serum IL-6, IL-10, IL-8, and TNF-α and in contrast, a significant reduction in the IFN-γ levels in hepatitis patients with maintenance haemodialysis therapy in comparison to healthy control group, (22).

These results indicates the predominance of Th2 cytokine which promote the persistency of virus, also HCV core and NS3 induced production of the anti-
inflammatory cytokines, IL-10,\(^{(23,24)}\).

IL-10 by itself and through cooperation with Th1 cytokines (such as IL-12) also regulates Th2 responses to prevent the overproduction of IL-4, IL-5 and IL-13, cytokines that can lead to severe fibrosis in, for example hepatitis C virus,\(^{(25,26)}\).

In the present study, in Thalassemia patients, there were an increase in serum concentrations of Alanine transaminase (ALT) and Aspartate transaminase (AST), and ALP in HCV positive patients as compare with control patients.

Hepatitis virus C infection is the main risk factor for liver injury in transfusion-dependent thalassemics,\(^{(27)}\). Interrelationship between iron overload, HCV infection and liver injury is still controversial. Multicenter cross-sectional studies have reported that the development and the severity of liver injury are strongly related to the extent of liver iron overload and to the presence of chronic HCV infection\(^{(28)}\).

Dimitrios et al, (2013), on the other hand suggested that in the late stages of liver disease in BTM patients, iron overload may be the critical determinant, since fibrosis is related to the minimal haemosiderosis, independently of HCV history,\(^{(29)}\).

In present study, anti-HCV positive patients had higher mean serum ALT, AST and ALP levels than the negative group, and the same finding was true for total bilirubin in HCV positive patients.

A study done by Ocak et al., (2006), found that the HCV positive patients had a significantly higher increase in
the activity of serum ALT level than anti-HCV-negative patients, Ameli et al., (2008), found that serum iron was significantly higher in anti-HCV positive patients compared to the negative group, \(^{(31)}\).

A previous pilot studies had suggested that IL-10 was well tolerated, normalized serum alanine aminotransferase (ALT), decreased hepatic inflammation and reduced liver fibrosis in patients with chronic hepatitis C who had not responded to previous IFN-based therapy. These data suggested that IL-10 has an important role in chronic inflammation and fibrogenesis in HCV and that IL-10 might be used in the treatment of chronic hepatitis C and other chronic liver diseases, \(^{(26,32)}\).

So in the present study, data suggest that IL-10 can be used as a non-invasive marker for detection of the chronicity and severity of liver inflammation in chronic hepatitis C.

Conclusions

1- There is significant increase in the concentration of IL-10 in the serum of patients of HCV.

2- There is significant increase in liver enzymes activities in patients with viral hepatitis.

3- From the present result, it can be concluded that there is a relation between level of IL-10 and liver function tests and it could be used as a biomarker for the infectivity with HCV.

Recommendations.

1. Measurement of the concentrations of IL-6, IL-12 and TNF in the sera of the positive HBV and HCV patients.
2. Study the effect of splenectomy on outcome on the concentration of interleukin in viral hepatitis.

3. Extend the study on all types of viral hepatitis.

References.

A PHOTOELASTIC STUDY OF STRESSES IN THE FEMURE

Dr. Jamal A. Hassan,* Dr. Sadiq J. Abass,* Eng. Zainab majid,**

*College of Engineering, Al-Nahrain University
**Electrical Engineering Technical College, Middle Technical University

E-mail: engzainabmajid@gmail.com

Abstract

The femur bone is the longest bone in the human body. The proximal end of femur contacted at hip joint and in the distal end contacted at knee joint. Femur bone affected with muscles attached with it and with contacts at joints and weight bearing of body, all of these applied loads on femur and stresses effect result. In this study we will discuss stress analysis on the femur bone when a compressive load applied on the head of the bone at the contact region with acetabulum by using the photo elasticity transmission technique. The normal femur bone scaling to prototype according to material properties an polariscope load applied. The effect of load on the prototype with passage of polarized light through it give fringes pattern which Interpretation to show the stress at head of femur and at the shaft of femur. The study was done in Baghdad during 2016 from Al-Nahrain University.

Keyword: Photoelasticity, femur bone and stress analysis.

دراسه الاجهادات على عظم الفخذ

الخلاصة

عظام الفخذ هو أطول عظام في جسم الإنسان. النهاية القريبة من عظام الفخذ تصل بمفصل الورك والهيئة البعيدة تصل بمفصل الركبة. عظم الفخذ تتأثر بالعضلات المتصلة به وتتأثر بأتصالاته مع المفاصل ووزن الجسم الذي تحمله. كل هذه الأحمال المسلطه على عظم الفخذ والاجهادات تؤثر على النتائج. في هذه الدراسة سوف نناقش تحليل الاجهادات على عظم الفخذ عند تسليط قوة الضغط على عظام العظام في منطقة اتصال مع العظام الحقيقية باستخدام تقنية المستقطب الضوئي الناقل. عظم الفخذ الطبيعي يتدرج إلى نموذج بقياسات معينة وفقًا لخصائص المادة المستخدمة والأحمال التي تسلط من المستقطب الضوئي المستخدم. تأثير الأحمال على نموذج العظم مع مرور الضوء المستقطب من خلاله يعني ترتيب هدبي يفسر لكي يظهر الاجهادات على رأس عظم الفخذ وعلى رم العظم.

الكلمات المفتاحية: المرونة الضوئية, عظم الفخذ, تحليل الشد.
INTRODUCTION

Photoelastic stress analysis is a technique that provides us with full field stress distribution at any examined model. It is based on the property of some transparent double refraction materials (birefringence material) [1]. If these materials are subjected to an applied load, the refractive index of material change and the magnitude of the change is different in two plane of principal stress. This result in light passing through stressed material at different speed according to applied load [2].

The hip is a ball-and-socket joint as shown in figure (1). The socket is formed by the acetabulum, which is part of the large pelvis bone. The ball is the femoral head, which is the upper end of the femur [3]. The femur head subjected to compressive load that applied from the pelvis at contact with acetabulum region. Qualitative analyses of the stress distribution of the trabecular femoral head of a human femur by photoelasticity are presented and find that the porous bone model makes the stresses. Reduced at the contact with surface of the femoral head joint. That because of maximum stress concentration is shifted from the surface to the interior of the bone, results from the damping of external forces and diffused them towards the interior of the bone tissue [4]. The state of stress of an intact femur was analyzed using a three-dimensional finite element model and strain gauges for experimental measurements. Several modes of loading, the deflections and the principal and comparison stresses were determined and compared. The upper one third and the diaphysis of the femur are differently affected in their state of stress. [5]

Use of photoelastic models to interpret and demonstrate biomechanical principles. Isochromatic fringes show bone stresses distribution in the femur is explained with respect to iliotibial tract loading, and he uses two-dimensional models to illustrate bone remodeling theories. [6]

Model from catalin made to femur bone with compressive load applied on the bone. The arrangement of stresses line markedly show the trabecular structure at longitudinal section of femur. The greater number of stresses line appears to be at medial side and shifted toward the line of mechanical axis of normal femur. [7]

In this work a qualitative analysis of the stress distribution of a cross section of the medial condyle of a human femur by photoelasticity is presented. A model of the cross section was obtained by plaster casting, carefully maintaining the internal architecture of the Porous bone. The fringe patterns observed in the porous bone model showed that the maximum stress concentration is shifted from the surface to the interior of the bone and diffused [8].

Fig.(1) Region of contact between femur head and acetabulum.

Aim of the study

In this study the photoelasticity used to find the stresses at femur bone of human body at hip joint. The stresses analyzed at different region in the femur bone and then compared with each other to find the higher stress which lead to fracture at some cases.

EXPERIMENTAL WORK

The first step on photoelasticity techniques calibration of material to find the material fringe values defined as number of fringes produced per unit load. Material fringe value used to accurately determine the stress distribution. The material fringe value depends on the type of birefringes material which used to make the
prototype. The calibration method used at this study by tensile specimen which have a specific dimensions depend on the thickness of material. The width of specimen w, the thickness h, and the load applied p, fringe order n ,and the axial stress σ.

So, \(\sigma_1 = \frac{P}{wh} \) and \(\sigma_2 = 0 \) \hspace{1cm} (1)

The birefringes material used at this study is the transparent polycarbonate. The load on tensile specimen increased gradually and order of fringes change with this increments as in figure(2). The material fringe value determined from equation (2).

\[
\frac{P}{wh} = \frac{nf}{h} \hspace{1cm} \text{or} \hspace{1cm} f = \frac{P}{wn} \hspace{1cm} (2)
\]

\[
f = \frac{25.52}{3.8 \times 1} = 6.7 \text{ N/mm fringes.}
\]

After calibration the model of bone scaled to 2D prototype and the load applied on it founded as in figure(3). The prototype on polariscope with compressive load at 75degree on head of femur and passage of polarized light give a fringe pattern to find the stress distribution at region of contact with acetabulum and stresses at the shaft of the bone as in figure(4).
The principal stress determined from fringe order appeared on the prototype with equation (3).

\[\sigma_1 - \sigma_2 = f^*n/h \quad (3) \]

\(h \) is the thickness of prototype.

Then find the stresses on the head of femur and shaft of femur with each load applied by mohrs circle as in figure(5).

Result:
The fringe order increase with the increasing of the load and find that the principal stresses and stresses in the femur head higher than the stress in the femur shaft as in table (1,2,3 and4).

Table 1: principal stresses on the femur head determined from fringe order

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Fringe order(fringe)</th>
<th>Principal stresses on femur head(Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.224</td>
<td>1</td>
<td>1.34</td>
</tr>
<tr>
<td>13.7322</td>
<td>2</td>
<td>2.68</td>
</tr>
<tr>
<td>17.9915</td>
<td>3</td>
<td>4.02</td>
</tr>
<tr>
<td>27.4646</td>
<td>4</td>
<td>5.36</td>
</tr>
<tr>
<td>31.7238</td>
<td>5</td>
<td>6.7</td>
</tr>
<tr>
<td>35.9830</td>
<td>6</td>
<td>8.04</td>
</tr>
<tr>
<td>40.2433</td>
<td>6</td>
<td>8.04</td>
</tr>
<tr>
<td>44.50159</td>
<td>7</td>
<td>9.32</td>
</tr>
<tr>
<td>48.76025</td>
<td>8</td>
<td>10.72</td>
</tr>
<tr>
<td>53.020111</td>
<td>9</td>
<td>12.06</td>
</tr>
<tr>
<td>57.2793</td>
<td>10</td>
<td>13.4</td>
</tr>
<tr>
<td>61.53862</td>
<td>10</td>
<td>13.4</td>
</tr>
<tr>
<td>70.5756</td>
<td>11</td>
<td>14.74</td>
</tr>
</tbody>
</table>
Table 2: principal stresses on the shaft of femur determined from fringe order.

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Fringe order(fringe)</th>
<th>Principal stress on the shaft of bone(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.224</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13.7322</td>
<td>1</td>
<td>1.34</td>
</tr>
<tr>
<td>17.9915</td>
<td>1</td>
<td>1.34</td>
</tr>
<tr>
<td>27.4646</td>
<td>2</td>
<td>2.68</td>
</tr>
<tr>
<td>31.7238</td>
<td>2</td>
<td>2.68</td>
</tr>
<tr>
<td>35.9830</td>
<td>2</td>
<td>2.68</td>
</tr>
<tr>
<td>40.24233</td>
<td>3</td>
<td>4.02</td>
</tr>
<tr>
<td>44.50159</td>
<td>3</td>
<td>4.02</td>
</tr>
<tr>
<td>48.76025</td>
<td>3</td>
<td>4.02</td>
</tr>
<tr>
<td>53.020111</td>
<td>4</td>
<td>5.36</td>
</tr>
<tr>
<td>57.2793</td>
<td>4</td>
<td>5.36</td>
</tr>
<tr>
<td>61.53862</td>
<td>5</td>
<td>6.7</td>
</tr>
<tr>
<td>70.5756</td>
<td>6</td>
<td>8.04</td>
</tr>
</tbody>
</table>

Table 3: stresses on the head of femur from Mohr circle.

<table>
<thead>
<tr>
<th>Principal stresses on the head of femur bone (MPa)</th>
<th>Stress(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.34</td>
<td>2.84</td>
</tr>
<tr>
<td>2.68</td>
<td>5.68</td>
</tr>
<tr>
<td>4.02</td>
<td>8.52</td>
</tr>
<tr>
<td>5.36</td>
<td>11.36</td>
</tr>
<tr>
<td>6.7</td>
<td>14.2</td>
</tr>
<tr>
<td>8.04</td>
<td>17.04</td>
</tr>
<tr>
<td>8.04</td>
<td>17.04</td>
</tr>
<tr>
<td>9.32</td>
<td>19.88</td>
</tr>
<tr>
<td>10.72</td>
<td>22.72</td>
</tr>
<tr>
<td>12.06</td>
<td>25.56</td>
</tr>
<tr>
<td>13.4</td>
<td>28.4</td>
</tr>
<tr>
<td>13.4</td>
<td>28.4</td>
</tr>
<tr>
<td>14.74</td>
<td>31.24</td>
</tr>
</tbody>
</table>

Table 4: stresses from Mohr circle on shaft of femur

<table>
<thead>
<tr>
<th>Principal stress on the shaft of bone(MPa)</th>
<th>Stresses(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.34</td>
<td>2.84</td>
</tr>
<tr>
<td>1.34</td>
<td>2.84</td>
</tr>
<tr>
<td>2.68</td>
<td>5.68</td>
</tr>
<tr>
<td>2.68</td>
<td>5.68</td>
</tr>
<tr>
<td>2.68</td>
<td>5.68</td>
</tr>
<tr>
<td>4.02</td>
<td>8.52</td>
</tr>
<tr>
<td>4.02</td>
<td>8.52</td>
</tr>
<tr>
<td>4.02</td>
<td>8.52</td>
</tr>
<tr>
<td>5.36</td>
<td>11.36</td>
</tr>
<tr>
<td>5.36</td>
<td>11.36</td>
</tr>
<tr>
<td>6.7</td>
<td>14.2</td>
</tr>
<tr>
<td>8.04</td>
<td>17.04</td>
</tr>
</tbody>
</table>
DISCUSSION

The fringe order on the head at contact more than the orders that reach at the shaft so, the stresses on the head of the bone higher than the stresses on the shaft of the bone.

Load applied directly from pelvis at contact region while the stresses on the shaft result from compression and decreased because of that the load not directly applied on it. So, with daily activity the hip joint may have arthritis or injury on the region of femur with hip contact or on the high stresses on the head of femur result from the load the femur neck that leads to hip replacement.

REFERENCES

Sensors data encryption using TSFS Algorithm

Shatha Habeeb and Dr. Rehab F. Hassan

University of Technology, Computer Sciences Department

E-mail: shathahabeeb@yahoo.com

Abstract

Sensors data security has an increasing importance with the use of sensors in all kinds of real world applications, after being collected from sensors, huge amount of data will be stored in a database, with different types of analysis. It should be protected from all attack kinds considering sensor data as sensitive data. Several security algorithms are implemented to present database protection, and to have powerful protection, the sensitive data should be covered from the risk of being attacked and not stored as original text only, therefore, the key solution for protecting database is to encrypt it. This paper provides database encryption for data acquisition from sensor. TSFS (Transposition, Substitution, Folding, and Shifting) algorithm has been used with three strong and different keys matrices after two sub-steps for key generation using genetic algorithm and expansion by column shifting. By implementing the enhanced algorithm, an efficient and strong database security system has been achieved to data received from sensor.

Keywords: TSFS, Cryptographic, Key expansion, Database Security, Sensor Data Encryption.

TSFS

تشفير بيانات أجهزة الاستشعار باستخدام خوارزمية

الجامعة التكنولوجية قسم علوم الحاسوب

الخلاصة: أمن بيانات أجهزة الاستشعار لها أهمية تتزايد مع استخدام أجهزة الاستشعار في جميع أنواع التطبيقات في العالم الحقيقي، بعد تجميعها من أجهزة الاستشعار، سيتم تخزين البيانات الضخمة في قاعدة بيانات. ينبغي حمايتها من جميع أنواع الهجمات. وتعتبر بيانات الاستشعار بيانات حساسة. يتم تنفيذ العديد من خوارزميات الأمان لتوفير الحماية لقاعدة البيانات، ولها خصائص قوية في حماية البيانات، وينبغي حجب البيانات الحساسة من خطر التعرض لهجوم وليس تخزينها. كنتص أساسي فقط، وبالتالي، فإن الحل الرئيسي لقاعدة البيانات المحمية هو التشفير.
هذا البحث يقدم تشفير قاعدة البيانات المستلمة من أجهزة الاستشعار. وقد استخدمت خوارزمية
مفاتيح قوية ومختلفة كما استخدمت المصفوفات لتسهيل التعامل مع هذه المفاتيح بعد ان تم الاستعانة الخوارزمية الجينية
لتوحيد المفاتيح الثلاثة لإضافة قوة أكبر تم تقييم عن طريق تحويل العمود. ومن خلال تنفيذ الخوارزمية المطورة، تم
تحقيق نظام فعال وقوي لأمن قواعد البيانات للبيانات الواردة من أجهزة الاستشعار.

الكلمات المفتاحية: أمن بيانات, التشفير, خوارزمية TSFS, أجهزة الاستشعار.

I. Introduction

The growing use of sensors in real world applications and linking these sensors to the Internet has its results obvious online on the Web, moreover, tens of devices can be communicating with each other in a real-time manner. Real world applications may connect and control several sensors and actuators with their data and services to be available at all times. [1]

The sensor can sense the physical world and convert it to electrical signals. There are many existing types of sensors that sense the environmental factors such as light power, temperature, audio waves, pictures, etc. [2] A number of sensor nodes (few tens to thousands) working simultaneously to observe a region to gain data about the environment.[3]

With data gained from sensors a database system can be build. The protection systems of database become critical, any damages or misusing will affect the sensitive data stored in that database and will also affect the entire system and the risk has been increased with the increasing number of database developments.

For implementing database security systems, there are four techniques: DBMS, OS physical security systems and data encrypting. The security techniques are not completely acceptable solutions. A well-ordered light-weight encrypting techniques TSFS algorithm will be used for sensitive data only, an effective implementation of queries will afford and a fast response to the users. TSFS is the symmetric-key block algorithm, similar keys are used for data encrypting and decrypting and its power dependents on the key length. [4]

II. Related work

Several schemes have more efficient and creative executions proposed for database security domain. An efficient light-weight database encryption techniques have been used, TSFS algorithm used with ordinary data and randomly generated key. [4] H. Al-Souly et al, used TSFS algorithm by spreading the data-set to separate characters, and by correcting shifting and substitution
operations, by supporting several modulo factors and four sixteen arrays correspondingly to avoid the inaccuracy that arises in the decryption steps [5].

Based on the Chinese Reminder theorem and using strong keys and sub-keys an implementation of encrypting the database structure in [3], a record encryption system for all the levels of columns and rows are implemented. Multilevel access control had been proposed in [6] to improve the security level.

A solution for confidentiality problem, a chip secured data access had been proposed in [7]. It is a quite effective and secure solution, however, still the cost is expensive and it is rather a complicated method.

III. TSFS Algorithm:

With 12 rounds, four types of conversions in TSFS algorithm: Substitution and transposition ciphers are considered the most significant essential techniques in building a new symmetric encryption algorithm. The advantage of this cipher is having the two aspects of security and cryptology, confusion and diffusion. TSFS uses the same sequence of these conversions for both encryption and decryption. Encryption algorithms are known as the ciphers and the opposite ciphers are the decryption algorithms. TSFS algorithms are a not Feistel ciphers, each conversion or set of conversions should be reversible. The keys have to be used in the reverse order also. Figure1 shows (illustrate) TSFS algorithm in general view. [4]

![Figure 1: TSFS Algorithm](image-url)
V. Proposed System

The proposed system collects data from the physical world by a set of sensors and stores it in a database. Then to secure the database by adapting the data in a form that cannot be stated by illegal people. The proposed system is an enhanced form of TSFS algorithms by using genetic algorithm to generate the key and extending it in a way to get strong key matrix. Besides adjusting its transposition and substitution steps, to avoid the error taking place through the decryption process. Experiment results demonstrate the power of the proposed system in the encryption of the sensitive data only.

To provide high security, the proposed system is a symmetric algorithm for database encryption with three keys after key expansion technique. For more security and effective system, these three keys had been expanded in twelve sub-keys by using the key expansion method.

1. Cryptographic Key:

Cryptography is often used in security environment to protect data that is sensitive, has a high value, or is susceptible to unauthorized disclosure or unnoticed modification through transmission or storage. It relies upon two basic components: a cryptographic algorithm (methodology) and a cryptographic key. [8]

1.1- Key Generation:

The proposed system generates three keys by using Genetic algorithm and with the help of random number generator to make the key complex. Key generation will go through a number of process and main criteria for key selection will be the fitness value of the population. [9]
Key Expansion:

The proposed algorithm generates three keys to be used in 12 rounds. In each round, each key is expanded to several sub-keys. The extension operations for the keys are done by changing the column positions and by using add round key procedure. Here, to get these keys, an arbitrary key generator have to be used only for getting the key values on the first step. Then the key is changed to numbers based on the sequence in the alphabets and stored in 4x4 matrix shape. The following algorithm shows key extension:
Algorithm 2: Key Expansion

Input Three keys of Array 4x4

Output 12 keys of Array

Process:

Key 1
- Expanded into key (i1, i2, i3, i4)
 - For key I1 - column 1 is not shifted,
 - column 2 is shifted one position,
 - column 3 is shifted two positions
 - column 4 is shifted three positions.
 - For key I2 - column 1 is shifted one position,
 - column 2 is shifted 2 positions,
 - column 3 is shifted three positions,
 - column 4 is not shifted.
 - For key I3 - column 1 is shifted two positions,
 - column 2 is shifted three positions,
 - column 3 is not shifted,
 - column 4 is shifted one position.
 - For key I4 - column 1 is shifted three positions,
 - column 2 is not shifted,
 - column 3 is shifted one position,
 - column 4 is shifted two positions.

Until End keys

<table>
<thead>
<tr>
<th>Original Key Expansion to key I, 1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Key Expansion to key I, 2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Original Key Expansion to key I, 3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Original Key Expansion to key I, 4</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 1 Role of shift algorithm of three key
2. Transposition

Transposition cipher is a significant type of traditional ciphers. It does not perform a replacement of one representation with another, alternatively modifies the position only. The symbol in the first position of the plain-text may occur in different position of the cipher text. That means transposition ciphers rearranges symbols. TSFS algorithm uses zigzag diagonal transposition for storing data into 4 x 4 matrix forms. Figure 3 shows transposition procedure with example.
3. Substitution
The next stage is substitution conversion. It changes each data matrix component with another one by implementing equation (1). Each character is replaced with another character only, and if the element is a number, it should be changed with a number. The encryption Equation (1) $E(x)$ for every given character x is:

$$E(x) = ((key1 \ast p) \mod M + key2) \mod M \quad (1)$$
Where p is the plaintext, key1 and key2 represent the keys that should be in the same location as p, M is the size of modulo process. TSFS algorithm takes two values for M unlike the original TSFS algorithm which takes one value only. Substitution procedure illustrated in equation (1) has confusion if the data is collected of numeric digits and alphabetic and M is equal to 26 for any digit, as exemplified in the next example. If plain data was 6, key1=1, key2=7, M = 26, then the result is 13. M in the proposed TSFS algorithm is equal to 26 if p represents alphabetic, and 10 if p equal to any numerical value. [5]

Decryption Equation (2) $D(E(x))$ can be written as follows:

$$D(E(x)) = (((E(x) - \text{key2}) \mod M) / \text{key1}) \mod M$$ \hspace{1cm} (2)

Substitution procedure can be considered as poly-alphabetic or mono-alphabetic ciphers. [4]

![Substitution](image1)

Figure 4 Substitution

4. **Folding**

The next stage use folding procedure. Folding is considered as a transposition cipher, the matrix elements are folded vertically, horizontally, and diagonally. The folding procedure mixes up the data from one location to other one. Figure 5 shows the result of folding procedure. [4,5]

![Folding](image2)

Figure 5 Folding
5. Shifting

The final stage of TSFS algorithms is shifting conversion, which offers an easy method for data encryption using a 16 element in array of numeric digits to replace the symbol with other one. Each array element contains a numeric representation of the data. Every digit must only appear once in each array element in any order. [4,11] In shifting procedure, within its array element, every element is replaced in the data matrix by its location.[5]

Each array element contains 26 numeric digits from 0 to 25. For shifting decryption procedure, the location is given as an input considered on the position of the data, the data represents the plain text of the given cipher-text.

This process is illustrated in the following figure 6.
All above encryption procedures form the first round only from TSFS algorithm. And output of the first round is the input to the second round, output of the second round is the input to the third round, and so on. The round is repeated 12 times, the cipher-text of the given plain text is the last round output and that cipher-text is stored in the database. Decryption Algorithm is the opposite procedure of the Encryption. [4,10]

VI. Conclusion

The exchanging and storing of sensor data between networks is increasing rapidly around the world. Attacks at that data raise the danger of data discovery. Many organizations must deal with regulation and legislation on data confidentiality. In this environment, the proposed security development contains an approach for protecting sensitive data against any attacker. The experimental result shows that TSFS algorithm with key generated by using genetic algorithm profitably important cipher, in addition to alphanumeric data. Improved performance approaches without compromising query processing time or database size.

Reference

2- Application based Study on Wireless Sensor Network.

Evanescent field Mach-Zehnder interferometer sensor for concentration measurement

Ruaa Khalil Musa¹, Salah Al deen Adnan², Ali Mahdi Hammadi³

Engineer¹, Assistant Professor²,³
¹,² Laser and Optoelectronics Engineering Department, University of Technology/Baghdad,
³ College of Electrical and Electronic Techniques, Middle Technical University.
ruaa.alsafi92@gmail.com ¹, dr.salahadnan@gmail.com², draioptic@gmail.com³

Abstract:
Optical fibers have been widely used in the field of sensing. In this paper, Mach-Zehnder interferometer is designed and constructed for detecting the concentration of solutions based on the excitation of the evanescent wave at the cladding/core interface. Laser diode (LD) with wavelength of 810 nm has been used. 3 cm of cladding has been removed in the middle of 1 m (SMF-28) for the two arms by using hydrofluoric acid (HF). One arm is isolated from the external perturbation, and the other arm is immersed in different concentrations of sucrose solutions range from 10% to 50% and sodium chloride (Nacl) solutions range from 5% to 25%. As the concentration of solution increases the output power decreases and the wavelength shifts toward the red region. The sensitivities of this sensor for different concentration of sucrose solutions and Nacl solutions are 0.017 nm/(% w/v) and 0.0474 nm/(% w/v), respectively.

Key words: Mach-Zehnder interferometer (MZI), evanescent field, concentration, wavelength shift, sensitivity.
متحسس المجال الزائل ماخ زندر لقياس التركيز

روى خليل موسى 1, صلاح الدين عدنان طه 2, علي مهدي حمادي 3

مهندسة 1, استاذ مساعد 2,3

قسم هندسة الليزر والالكترونيات البصريه / الجامعة التكنلوجيه 1,2. كلية التقنيات الهندسيه الكهربائيه والالكترونيه / الجامعة التقنيه الوسطى 3

الخلاصه:

قد استخدمت الألياف الضوئية على نطاق واسع في مجال التحسس. في هذه الورقة تم تصميم وبناء "ماخ زندر التداخل" للكشف عن تركيز المحاليل على اساس تحفيز الموجه الزائله على السطح الفاصل للقلب/القشره. قد استخدم ليزر الصمام الثنائي (LD) مع طول موجي 810 نانومتر. تم ازالة 3 cm من القشره في منتصف SMF-28 مع للذراعين (28-1) باستخدام حامض الهيدروفلوريك (HF). يتم عزل ذراع واحد من الاضطراب الخارجي وعمر الذراع الاخر في تركيز مختلف من محلال السكروز تتراوح من 10% إلى 50% وتتراوح محاليل كلوريد الصوديوم من 5% إلى 25%. كما يزيد تركيز محلال تقل الطاقة الخارجيه ويتحرك الطول الموجي نحو المنطقة الحمراء. الحساسيه لهذا المتحسس تتراكيز مختلفه من محلال السكروز ومحاليل كلوريد الصوديوم هي 0.0474 nm/(% w/v) و0.017 nm/(% w/v) على التوالي.

الكلمات المفتاحيه: ماخ زندر التداخل , المجال الزائل , التركيز , تحرك الطول الموجي , الحساسيه.
Introduction:

Optical fiber sensors have been used in several applications such as chemical, biological, and environmental industries, for the measurements of temperature, liquid level, strain, and Refractive index [1].

Optical fiber sensor offers several advantages compared to electronic sensor due to their features like light weight, robust to environment, non-electrical devices, immune to electromagnetic interference (EMI) and radio frequency interference (RFI), high resolution, dynamic range, high sensitivity, allow remote sensing, allow to access into inaccessible areas, small size[2-4].

The refractive index (RI) is the very essential parameter in these applications particularly in bio-sensing for biochemical reactions or controlling molecular bindings and in food industries or chemical in order to control the quality [5].

In the past various refractive index sensors such as Abbe and Rayleigh refractometers were demonstrated to measure the RI but they have the disadvantages of weight and big size [6]. Nowadays fiber optic refractive index sensors are widely used for these applications [7].

Recently, Fiber optic Mach–Zehnder interferometer (MZI) sensors are widely used in various chemical and physical sensing applications. In this paper, MZI is used because of several advantages such as simple structure, ease of fabrication, ability of responding to various measurands, and low cost [8].

Mach-Zehnder Interferometer Sensor:

Mach-Zehnder Interferometer sensor is one of the most sensitive configurations of fiber optic sensors [9], which can be used as an evanescent field sensor. The emitted light from the source is divided by the first 3dB coupler into two equal parts, transmitting in different paths, and then they are combined by the second 3 dB coupler. The reference arm isn't exposed to the measurand, and the sensing arm is exposed to the measurand which is introduced as cladding, this induces a phase difference between the signals resulted in an interference, the output signal shows a sinusoidal variation is directly proportional to the refractive index change of the measurand [10-12]. The schematic diagram of Mach–Zehnder interferometer is shown in Figure (1) [13].

The advantages of MZI sensors are reduced noise due to intensity fluctuations, reduce undesired feedback effect, and any small change in the optical path length of the sensing arm will produce a large change in the output. The optical path length of the sensing arm is changed by changing the physical length of it (under the effect of temperature or pressure) or by changing the effective refractive index of it (by changing the refractive index of the cladding or the refractive index of the guiding layer) [11].

The input signal \(E_{in} \) splits into two identical parts, the signals in the two arms of the interferometer are described by [11]:
\[E_r = \frac{E_{in}}{\sqrt{2}} \quad (1) \]
\[E_s = \frac{E_{in}}{\sqrt{2}} \quad (2) \]

Where \(E_r \) and \(E_s \) are the signals in the reference and sensing arm respectively. The two signals transmit with different paths, until they reach the second coupler. \(\Delta \phi \) is the additional optical phase, which is introduced in the sensing arm. Before the second coupler, the two signals are given by [11]:

\[E_r = \frac{E_{in}}{\sqrt{2}} e^{j \omega t} \quad (3) \]
\[\frac{E_{in}}{\sqrt{2}} e^{j (\omega t + \Delta \phi)} \quad (4) \]

Where \(\omega \) is the angular frequency.

At output, the two signals are recomposed, \(E_{out} \) is given by [11]:

\[E_{out} = E_r + E_s \]
\[= \frac{E_{in}}{\sqrt{2}} (e^{j \omega t} + e^{j (\omega t + \Delta \phi)}) \quad (5) \]

The interference of two beams is given by [14]:

\[I = I_r + I_s + 2 \sqrt{I_r I_s} \cos(\Delta \phi) \quad (6) \]

Where \(I_r \) and \(I_s \) are the intensities of reference and sensing arm.

Output power of Mach-Zehnder Interferometer is described by [15]:

\[P_{out} = P_{in} \cos^2(0.5 \Delta \phi) \quad (7) \]

The phase difference between the sensing arm and reference arm is described by [16]:

\[\Delta \phi = \frac{2 \pi}{\lambda} L \Delta n_{eff} \quad (8) \]

Where \(L \) is the interaction length (the sensing area length), \(\lambda \) is the wavelength in the vacuum, and \(\Delta n_{eff} \) is the change in the effective refractive index of the mode.

Each solution is referred to as the mode of structure. Each mode is described by its effective index, the effective index it’s a parameter that governs the electromagnetic wave as it transmits along the fiber [11].

Experimental Method:

Sodium chloride (NaCl) and sucrose have been used as guiding liquids with various concentrations. The concentrations of NaCl solutions range from 5% to 25% and for sucrose solutions range from 10% to 50% . The refractive index for NaCl and Sucrose solutions at each concentration is measured by using Abbe refractometer.

For the sensing and reference arms, 3 cm of outer plastic jacket in the middle of 1 m of SMF-28 has been removed by immersing the fiber in acetone; the buffer is also removed by acetone. The cladding is partially etched by using hydrofluoric acid (HF) with 40% concentration for 35 minutes to obtain high sensitive region to the surrounding concentrations. The schematic diagram of a Mach-Zehnder interferometer concentration sensor is shown in Figure (2).
The system consists of a laser diode (LD) with wavelength of 810 nm, the first (3dB) optical coupler (splitting ratio 50:50) is used to split the light into two identical beams, the coupler is connected with two identical SMF-28 (equal etching length) using (FC to ST) adapter, to combine the light beams the two ends of the fibers are connected to the second (3dB) coupler also with (splitting ratio 50:50) using (FC to ST) adapter. The output of the coupler is connected to a power meter (Fiber Optic Communications Training System EF-970/R promax) and/or Optical Spectrum Analyzer model (HR 2000). The experimental setup of the (MZI) concentration sensor is shown in Figure (3).

When the emitted light entered the first optical coupler, the light beam is divided into two equal beams, the first beam entered in the reference arm, which is isolated from perturbation and the second beam entered on the sensing arm which is immersed in distilled water and different concentrations of Sucrose and Nacl solutions. The beam, then suffer a phase shift due to the external concentrations where the output interference pattern between the two beams is taken by an Optical Spectrum Analyzer, and the output power is taken by the power meter. All measurements are carried out at room temperature.

Results and Discussion:

Figures (4) and (5) show the relationship between refractive index and concentration of Nacl and Sucrose solutions, respectively.

From the Figures the refractive index is directly proportional to the concentration, as concentration of guiding liquid increases refractive index increases.

The reference arm is isolated from any external perturbation, the variation which is induced in the sensing arm is due to the change in the concentration of Nacl solutions range from 5% to 25%, and Sucrose solutions range from 10% to 50%. Figures (6) and (7) show the interference pattern for different concentration of Sucrose and Nacl solutions, respectively.

According to Equation (8) as the concentration of solution increases (the refractive index of the guiding layer increases) the effective refractive index of propagation mode in the sensing arm increases, this will lead to increase the shift towards long wavelength (red region), also the curves show that as the concentration of Nacl and Sucrose solutions increase the intensity decreases.

The sensitivity of this sensor (s=Δλ/Δc) for sucrose and Nacl solutions is 0.017 nm/ (% w/v) and 0.0474 nm/ (% w/v), respectively, as shown in Figures (8) and (9).

According to Equation (7) as the concentration of solution increases (the refractive index of the guiding layer increases), the phase shift increases this lead to decrease in the output power. The relationship between concentration of Sucrose and Nacl solutions and output power are shown in Figures (10) and (11), respectively.

Conclusion:

A Mach-Zehnder Interferometer sensor based on the excitation of evanescent field has been demonstrated where the variation
of the surrounding concentration is detected by measuring a shift in the wavelength. A red shift in the output spectrum is observed with increasing of concentration. The sensitivity of this sensor for sucrose solutions in the range of 10% to 50% is 0.017 nm/(% w/v) and for Nacl solutions in the range of 5% to 25% is 0.0474 nm/(% w/v). This sensor can be used for measuring concentration in various applications such as medical, food industry, pharmaceutical, environmental controlling systems, and monitoring the quality of drinking water.

References:

Figure (1): The schematic diagram of Mach-Zehnder Interferometer [13].

Figure (2): The schematic diagram of a MZI concentration sensor.

Figure (3): The experimental setup of the MZI concentration sensor.
Figure (4): The relationship between concentration and refractive index of NaCl solutions.

Figure (5): The relationship between concentration and refractive index of sucrose solutions.
Figure (6): Interference spectra of MZI sensor for different concentrations of Sucrose solutions.

Figure (7): Interference spectra of MZI sensor for different concentrations of NaCl solutions.
Figure (8): The relationship between wavelength and different concentrations of Sucrose solutions.

Figure (9): The relationship between wavelength and different concentrations of Nacl solutions.
Figure (10): The relationship between output power and different concentrations of sucrose solutions.

Figure (11): The relationship between output power and different concentrations of Nacl solutions.
Single phase Cascaded H-Bridge Multilevel Inverter study and comparison of different levels

Asst.prof. Jameel Kadhum Abed
Technical College
Middle Technical University
drjameel55@yahoo.com

Muhammad Jabbar Munati Electrical Engineering
Institute of Technology Baghdad
Middle Technical University
m.j.mnati@gmail.com

Bassam Mohammed Yaseen
Master student in Electrical Engineering Technical College
Middle Technical University
bsam88king@yahoo.com

Abstract:

Multi-level inverter used in applications that require high power and medium voltage. It can be used in: homes, factories, as well as in the military and medical aspects. This paper deals with study of Cascaded H-bridge and comparison between different levels for this type (three level, five level and seven level are presenting in this study). The comparison based on the design, the cost and the total harmonic distortion. The design tends to be more complicated when increasing the number of levels because of using more sources, more H-bridges and more connection wires. The control becomes more complexity as well as the inverter will be expensive and heavy as compared to low levels. Considering to the results of Matlab\ Simulink which illustrate the total harmonic distortion is being low when increasing the level and this will be an important matter in the output voltage. The level number of multi-level inverter is choosing according to the type of load.

Key words: Cascaded H-Bridge multilevel inverter, Sinusoidal pulse width modulation techniques
الخلاصة:

العاكس متعدد المستويات (Multilevel Inverter) يستخدم في التطبيقات التي تتطلب قدرة عالية وفولتية متوسطة. يمكن استخدامه في المنازل، المصانع، وكذلك في الجوانب الطبية والعسكرية. هذا البحث يختص بدراسة ومقارنة بين مستويات مختلفة لهذا النوع (ثلاث، خمس، وسبعة مستويات). المقارنة اعتمدت على التصميم، الكلفة، والتشوه التوافقي الكلي (H-bridge). التصميم يكون أكثر تعقيدًا عند زيادة عدد المستويات بسبب استخدام مصادر، خليه وتصويلات أكثر. التحكم بالمفاتيح أكثر صعوبة عند زيادة عدد المستويات كذلك العاكس يصبح مكلف وثقيل بالمقارنة. التصنيف والتشوه التوافقي الكلي (Total Harmonic Distortion) الذي توضح التصور التوافقي الكلي، مع المستوى الأقل. بالنسبة إلى نتائج Matlab التي توضح التشوه التوافقي الكلي (Total Harmonic Distortion) يكون أقل عند زيادة المستوى وهذا أمر مهم في موجة الفولتية الخارجية. مستوى العاكس متعدد المستوى للمفتاح (Multilevel Inverter) يختار حسب نوع الحمل.

الكلمات المفتاحية: العاكس متعدد المستويات نوع Cascaded H-Bridge، مستوى العاكس متعدد المستوى.
I. Introduction:

Development of the industries has led to increased need for using high power equipment in megawatts level. For purpose of providing energy to this equipment the multilevel inverter appeared. Multilevel inverter is a device which converts Direct Voltage Source (DCV) to Alternating Voltage Source (ACV). It consists of a group of semiconductor and generates stepped voltage with staircase waveform. Increasing the number of steps lead to smooth signal with reduces distortion and the shape of the wave approaching to sine wave. There are many power applications need multilevel inverter such as variable speed drive, flexible AC transmission systems (FACTS) and renewable energy such as wind, full cells and photovoltaic [1,2]. There are different topologies of multilevel inverter: Neutral point clamped multilevel inverter or Diode clamped multilevel inverter [3,4], Fly capacitance multilevel inverter and Cascaded H-bridge multilevel inverter [5,6]. Neutral point clamped multilevel inverter and Fly capacitance multilevel inverter are single DC source but Cascaded H-bridge multilevel inverter uses multi DC source. Cascaded H-bridge multilevel inverter preferably employ instead of the other two types because it’s required less number of components but also need separate DC source in each level [7]. The multilevel inverter obtains an alternating current output voltage with a staircase waveform [8].

The main features of multi-level inverter are:[9]

1. Less distortion and lower dv/dt of output voltage.
2. Minimum distortion of input current.
3. They generate smaller common-mode (CM) voltage, thus reducing the stress in the motor bearings. In addition, using sophisticated modulation methods, CM voltages can be eliminated.
4. Operate with low switching frequency, which reduce switching loss.

Multilevel inverter circuits have been appearing for more than 30 years. First appeared in 1975.[10]

II. Cascaded H Bridge Multilevel Inverter (CHBMLI)

The set of H-Bridge (Full Bridge) inverter with separate DC Sources are connected in cascade to configure the cascaded H-Bridge multilevel inverter [11]. Figure (1) shows the circuit diagram of an n level inverter. The output voltage generates by each single H-bridge of an inverter have three different value of voltage: +V_{DC}, 0 and −V_{DC}. The output voltage generated by cascade H-Bridge inverter is the total voltage generated by each H-bridge cell [12].The required number of semiconductor switches are 2(n-1) where n is the number of level. The number of DC sources is equal to the number of H-Bridge cells. The cost and the weight of this inverter is less than Diode clamped multilevel inverter and Flying Capacitor multilevel inverter but the losses of it are more as compared with the other two types [13]. The voltage unbalance of H-bridge multilevel inverter is very low. It can be used in many applications such as motor drive system, photovoltaic cell, solar and fuel cell.
i. **Single phase three level CHBMLI**

Figure (2) shows the circuit of single phase three level CHBMLI. The circuit consisting of single DC source and four switches (single H-bridge cell). The waveform of output voltage of this level is shown in figure (3). The three levels are $+V_{DC}$, 0 and $-V_{DC}$. Different operation cases of three level CHB inverter are explained below in table 1.

<table>
<thead>
<tr>
<th>Case</th>
<th>Output voltage</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$+V_{DC}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$-V_{DC}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure (2). Circuit of single phase three level CHBMLI [14]
ii. Single phase five level CHBMLI

Figure (4) shows the circuit of single phase five level CHBMLI. The circuit consisting of dual DC sources and eight switches (two H-Bridge cells). The output voltage of five level inverter is generated by two H-bridge cell. The voltage of the first H-Bridge cell is V_1 and the second H-Bridge cell is V_2. The total voltage of five level inverter is the sum of V_1 and V_2. Figure (5) shows the waveform of output voltage of this level. The five levels are $0, +V_{DC}, +2V_{DC}, -V_{DC}$ and $-2V_{DC}$. Different operation cases of five level CHB inverter are explained below in table2.

Table2. Switches status of five level CHBMLI [14]

<table>
<thead>
<tr>
<th>Case</th>
<th>Output Voltage</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$+V_{DC}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>$+2V_{DC}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>$+V_{DC}$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>$-V_{DC}$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>$-2V_{DC}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>$-V_{DC}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
i. Single phase seven level CHBMLI

Figure (6) shows the circuit of single phase seven level CHBMLI. The circuit consisting of twelve switches (three H-Bridge cells) and three DC sources. The waveform of output voltage of seven level multilevel inverter is shown in figure (7). The seven levels are \(0, +V_{DC}, +2V_{DC}, +3V_{DC}, -V_{DC}, -2V_{DC}\) and \(-3V_{DC}\). Different operation cases of seven level CHB inverter are explained in table3.
Table 3. Switches status of seven level CHBMLI [14]

<table>
<thead>
<tr>
<th>Case</th>
<th>Output Voltage</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>S₅</th>
<th>S₆</th>
<th>S₇</th>
<th>S₈</th>
<th>S₉</th>
<th>S₁₀</th>
<th>S₁₁</th>
<th>S₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>+V<sub>DC</sub></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>+2V<sub>DC</sub></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>+3V<sub>DC</sub></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>+2V<sub>DC</sub></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>+V<sub>DC</sub></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>-V<sub>DC</sub></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-2V<sub>DC</sub></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>-3V<sub>DC</sub></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>-2V<sub>DC</sub></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>-V<sub>DC</sub></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure (6). Circuit of seven level CHBMLI [14]
III. Sinusoidal PWM techniques (SPWM)

Different multicarrier techniques are used to decrease the distortion of multilevel inverter [15]. SPWM is one of these techniques, the sinusoidal wave is a modulating signal and the triangular waves are carrier signals. An n level inverter need (n-1) carrier signal [16]. The pulses of gates are generated as a result of comparing a sinusoidal modulating signal with a triangular carrier signals. Figures (8, 9 and 10) Shows carrier signals with a reference modulating signal of three, five and seven level CHB inverter respectively. The carrier signals are in the same phase and amplitude but different from each other in the dc level [17]. The main advantage of this technique is decreasing the size of the filter to minimum and therefore reduces the cost, size and weight of an inverter.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Three level</th>
<th>Five level</th>
<th>Seven level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cells</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Number of switches</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>THD</td>
<td>52.23%</td>
<td>26.63%</td>
<td>18.01%</td>
</tr>
<tr>
<td>Cost</td>
<td>Less</td>
<td>Medium</td>
<td>More</td>
</tr>
<tr>
<td>Weight</td>
<td>Less</td>
<td>Medium</td>
<td>More</td>
</tr>
</tbody>
</table>
Figure (8). Carrier and Reference signals of three level CHBMLI

Figure (9). Carrier and Reference signals of five level CHBMLI

Figure (10). Carrier and Reference signals of seven level CHBMLI
V. Results:
Design of CHBMLI and the results of output voltage waveforms, output current waveforms and values of THD are obtained by Matlab Simulink 2010 version 7.11.0. The figures below show the results of three, five and seven level respectively with resistive and inductive load (R=100Ω and L=0.5H).

![Output voltage waveform of three level](image1)

Figure (11). Output voltage waveform of three level

![Output current waveform of three level](image2)

Figure (12). Output current waveform of three level

![THD of three level](image3)

Figure (13). THD of three level
Figure (14). Output voltage waveform of five level

Figure (15). Output current waveform of five level

Figure (16). THD of five level
Figure (17). Output voltage waveform of seven level

Figure (18). Output current waveform of seven level

Figure (19). THD of seven level
V. Conclusion:

This paper deals with the study and comparison of cascaded H-Bridge topology with different levels. The comparison has three different level three, five and seven level and the method of control which use is SPWM. The result of MATLAB\Simulink appears less distortion at high level i.e. total harmonic distortion (THD) decreases with the increase in the number of level. The output voltage waveform of high level is improving and approaching more to the sinusoidal waveform. The output current of seven level is more than output currents of five level and three level. These are the advantages of increasing the number of level. But the cost, size and weight are increasing as well as the design is more complicated in high level of Multilevel Inverter.

References:

10.1109/ICPERE.2012.6287235, July 2012
Design of Maximum power Tracking System by Automatic Control of Solar Cell Panel to the Sun Direction

Kader H.A. Al-Shara
Al-Farabi University College, Department of Computer Engineering

Kaderalshara@yahoo.com

Abstract:
Renewable energy is an area of significant investment and importance for future generations. The basis of this project is to design a new automatic control system for solar panel that tracking maximum power tracking according to the direction of sun ray. This project is an analysis of maximum power that can generate from the solar panel. This project needed to investigate the system parameter that affected the input sun ray to the solar panel. The system parameter that needs to investigate is weather, cell type, number of cells, temperature and the intensity of the sun. The system parameter is important to create the maximum power that can be generated by the design solar panel. In this paper, the main purpose is to design a system which controls the direction of the solar panel base on the sun direction and the main system parameter is the intensity of sun in daily mode. The system uses the motor type for controlling the angle of the solar panel base on the maximum intensity of sun ray. The validity of this proposed system achieved the maximum power of 101 Watt compared with the conventional types.

Keywords: Solar cell, Renewable Energy, Polycrystalline, maximum power.
1. Introduction
Nowadays, the electrical system is widely used in the world. Consuming of electrical energy is increasing from day to day with the growing demand for electrical users that follows the massive jump of new technology in electrical component. The electrical consumption in South Asia increases 20% from 1980 to 2012 because the demand of the electrical user rapidly increases. [1-3].
For Example, in Malaysia, the greatest power plant generation of electricity currently use is a thermal power plant and hydroelectric power plant supported by TNB Company. Thermal power plants can cause much affection for our environment. The burning of coal for thermal power plant that release carbon dioxide and methane gases that can affect the greenhouse effect for the environment. The hydroelectric is a one of green energy, but it can’t accommodate the demand of users today. The hydroelectric limited the production of electricity that can’t increase easily. The service and maintenance of turbine fan of hydroelectric also need high cost to make sure the turbine is working every time. Based on the above listed challenges, the proposed based on a solar panel system can help to solve this problem. The solar energy is reliable resources that can be a cost-effective contingency [4]. Solar panel system also can provide virtually power system without affecting the environment problem because it is secure and save green energy [5]. The maintenance cost of solar panel is less than the hydroelectric that need more workers to maintain the process is running smoothly [6]. But, the installation of solar panel needs high cost to get the higher wattage compare to another power plant like hydroelectric and combustion of coal. The designing of the maximum power, solar panel can solve a little bit installation cost. By designing the system, it can save the space and cost forget the high output electrical wattage of solar panel. The remainder of this manuscript is organized as follows: Section two presents the Solar Panel Model. Section Three focuses on the scheme of the proposed system, and Section Four concludes the paper.

2. Solar Panel Model
A solar cell is modeled as a current source with a diode and represented as an equivalent circuit as shown in Figure 1.
The parameter's value of solar cell like diode, resistor and current will change the output power of I-V curve.
The model of solar panel is obtained by connecting of solar cells in series and parallel. The interconnection of solar panel is shown in Figure 2, which shows how the output power is produce depends on the designing of connection of solar cell. The output power that will produce for each type of connection in solar panel will differ. The selection of connection
optimization is necessary to obtain the maximum power that can be generated by solar panel

2.1 System Design

The derived equations represented a mathematical analysis for calculating the maximum output power \(P_{\text{max}} \) from the solar panel model. The basic equation is mainly based on previously published articles [7-8].

\[I = I_{pv} - I_0(e^{BV} - 1) \] \hspace{1cm} (1)

\[I_{pv} = 2.54 \sin \left[\frac{\pi}{12} (t - 6) \right] \] \hspace{1cm} (2)

\[P = IV \] \hspace{1cm} (3)

\[P = (I_{pv} - I_0(e^{BV} - 1))(V) \] \hspace{1cm} (4)

\[
\frac{dP}{dt} = (I_{pv} - I_0(e^{BV} - 1)) - (I_0e^{BV} - 1)(V) = \frac{I_{pv} + I_0 - I_0e^{BV}(1 + bV)}{(V)}
\] \hspace{1cm} (5)

\[I_{pv} + I_0 - I_0e^{BV}(1 + bV) = 0 \] \hspace{1cm} (6)

Let,

\[b = \frac{1}{2} \quad \text{and} \quad I_0 = 4.1 \times 10^{-5} \]

Then,

\[\frac{2.54}{4.1 \times 10^{-5}} \sin \left[\frac{\pi}{12(t-6)} \right] = e^\frac{V}{2} \left(1 + \frac{V}{2} \right) - 1 \] \hspace{1cm} (7)

Final equation is,

\[P_{\text{max}} = \left[2.54 + \sin \left(\frac{\pi}{12} (t_{\text{max}} - 6) \right)\right] - I_0 \left(e^{\frac{V_{\text{max}}}{2}} - 1 \right) \] \hspace{1cm} (8)

Where, \(I, V, t \) and \(b \) represent the voltage, current, time and solar sale absorption constant, respectively.

Figure 3-4 shows the detailed of the project schematic diagram for the system. A couple of solar panels are installed in the single control motor. The motor is controlled from the main control station in order to move a solar panel as a function of sun direction. The motor is automatically operated in daytime only.

3.1 System Performance

3.2 Ideal Photovoltaic Cell Array

The Figure 5 shows the simulation of ideal photovoltaic cell in a standard condition. The input signal of the simulation is constant that are 25 °C of temperature and 1k W/m^2 of Irradiation. The signal is in optimum condition to get the maximum power from the photovoltaic cell.

The parameter that need to change in solar cell are short circuit current (Iscn), Open circuit voltage (Vocn), Maximum Current (Imp), and the Maximum Voltage (Vmp) to get the maximum power that can be generated by solar cell.

Figure 6-7 show the result for I-V and P-V graph of ideal solar cell. The curve explains the value of the maximum power of the solar panel. The graph shows that the maximum power that generated is 1000 W during maximum voltage at 90 V. The result is for ideal solar cell value that can be controlled by changing the parameter of the solar cell. The changing of the parameter may affect the value of output power of solar panel.
3.3 Simulation Model

For the designed simulation, the 100 of cell is combining to be a solar panel. The simple circuit of the simulation is shown in Figure 8 below. The simulation of the system is comparing the output power of solar panel from different input concentration of sun that called irradiation. The input irradiation is entering to the system from 0 to 1000 W/m^2. Then, it will connect to the Simulink-PS Converter to convert the unit less Simulink input Irradiation to a physical signal. The physical signals directly connect to the input Ir for solar panel. The output from the 100 panel block diagram is connected to the current sensor and voltage sensor. The function of the current sensor is directly converted the output signal from the current measured to the physical signal proportional to the current. Then, the voltage signal is quite similar to the current sensor but its change the voltage measured signal. From these two sensors, the output power can calculate by product of the signal from current and voltage sensor. The value of current (I), voltage (V), and power (P) is export to the MATLAB by using a workspace block diagram.

After running the simulation in Simulink MATLAB, the output data will export to the MATLAB to plotting the graphs. The graph is to analyze the relationship between current, voltage, and power to the change of input irradiation. The simulation results obtained Fig.9 presents the increasing of output power under the changing of irradiance. From the graph above, the maximum power can be defined during the input irradiance is at the optimum value. The maximum power that can be generated from the simulation is 160.9 W.

4. System Performance with difference type of Solar cell

The first step for the mathematical analysis of solar panel is defining the parameter that need to calculate in the formula. The value of each parameter depends on the data sheet of Monocrystalline type solar module SPM-100M and Polycrystalline type solar module SPM-20M. Table 1 and Table 2 shows the list of parameter from the datasheets given. Moreover, other solar cell system parameters are based on the previously published articles in [9-11].

Based on the various system parameters listed in Table 1 and Table 2, the parameter value is set as a constant value for the mathematical analysis. This result of mathematical analysis is evaluated by comparing the difference in temperature value. Table 3 shows the value of difference of for evaluating the output power of solar panel. Two types of solar panel are comparing the result by changing the temperature.

4.1 Performance of Monocrystalline solar panel type.

The Figure 10 shows the results of Current and voltage for monocrystalline solar panel type. The graph represents the value of voltage is
decreasing under high temperature. To archive the maximum voltage that can generate is maintain the solar panel under lower temperature. The value of current for the monocrystalline solar panel is around 5.6A to 6A under the difference of temperature. The current a little bit increasing when the temperature is increased.

The Figure 1 shows the relationship between power and voltage from the monocrystalline solar panel type. The graph above proves that the maximum power can be achieved by decreasing the value of temperature. The maximum power that can generate is 101 W at 10 °C, 95 W at 25 °C, 87 W at 45 °C and 74 W at 75°C.

4.2 Performance of Polycrystalline solar panel.

Figure 12 represents the I-V curve for polycrystalline type solar panel. The output voltage of this solar panel is similar to the monocrystalline solar panel. But, from the graph below the output current of this solar panel type is smaller compared to the monocrystalline solar panel. The result shows the output current only 1 A to 1.5 A.

Finally, Figure 13 depicts the graph of P-V curve of polycrystalline type solar panel is plotted. The graph shows that the power is decreasing under the high temperature. The graph shows the Maximum power from this solar panel type is lower than monocrystalline type. The maximum power from this solar panel is shown in Figure 4.15 below. The maximum power is 19.2 W at 10 °C, 19.0 W at 25 °C, 18.4 W at 45 °C and 17 W at 75 °C. The ratio of the output power and temperature is lower compared to the monocrystalline solar panel type.

5. Conclusion

In this paper, a new model of dual solar cell is designed to compare the output power result with different parameters. The result shows the relationship between maximum output power with the difference irradiance or concentration of sun. The simulation represents the design of maximum power, solar panel system according to the sun direction to achieve the first step towards real time environment. The solar panel must be in optimum irradiation to achieve maximum power from solar panel. The solar panel must be controlled perpendicularly directly according sun direction to get the optimum of irradiation. Otherwise, the shadowing effect will occur if the solar panel system at fixed condition. The cloudy and rainy weather also gives the negative impact to the generation of maximum power. The mathematical analysis of the maximum power solar panel is implemented in MATLAB programming by comparing the two different types of solar panel datasheet. From the result, the effect of temperature for the monocrytalline type and the polycrystalline type of solar panel can be analyzed. The result shows the polycrystalline solar panel more efficient compare with the monocrystalline solar panel.
Figure 1: Equivalent Circuit of Solar Cell [3].

Figure 2: Series and Parallel connection of Solar Cell in a Solar Panel. [3]
Figure 3: Proposed Design of Dual Solar Panel.

Figure 4: Dimension of Solar Panel Design
Figure 5: Simulation of Ideal Photovoltaic cell Array.

Figure 6: Ideal Solar cell I-V Graph.

Figure 7: Ideal Solar cell P-V graph
Figure 8: Simulation of Solar Panel System.

Figure 9: The simulation output Power over Irradiance Graph
Table 1: Parameters of SPM100-M Monocrystalline type solar panel.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power, P_{max}</td>
<td>20 W</td>
</tr>
<tr>
<td>Maximum Power Voltage, V_{mp}</td>
<td>18.32 V</td>
</tr>
<tr>
<td>Maximum Power Current, I_{mp}</td>
<td>1.09 A</td>
</tr>
<tr>
<td>Open-circuit Voltage, V_{oct}</td>
<td>22.06 V</td>
</tr>
<tr>
<td>Short-circuit Current, I_{sc}</td>
<td>1.17 A</td>
</tr>
<tr>
<td>Series Fuse Rating</td>
<td>10 A</td>
</tr>
<tr>
<td>NOTC</td>
<td>47 ℃</td>
</tr>
</tbody>
</table>

Table 2: Parameters of SPM020-P polycrystalline type solar panel

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power, P_{max}</td>
<td>20 W</td>
</tr>
<tr>
<td>Maximum Power Voltage, V_{mp}</td>
<td>18.32 V</td>
</tr>
<tr>
<td>Maximum Power Current, I_{mp}</td>
<td>1.09 A</td>
</tr>
<tr>
<td>Open-circuit Voltage, V_{oct}</td>
<td>22.06 V</td>
</tr>
<tr>
<td>Short-circuit Current, I_{sc}</td>
<td>1.17 A</td>
</tr>
<tr>
<td>Series Fuse Rating</td>
<td>10 A</td>
</tr>
<tr>
<td>NOTC</td>
<td>47 ℃</td>
</tr>
</tbody>
</table>

Table 3: Table of Changing Temperature with Maximum Irradiation of Sun.

<table>
<thead>
<tr>
<th>Irradiation of Sun (W/m^2)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>25</td>
</tr>
<tr>
<td>1000</td>
<td>45</td>
</tr>
<tr>
<td>1000</td>
<td>75</td>
</tr>
</tbody>
</table>
Figure 10: I-V Curve of Monocrystalline SPM100-M Model

Figure 11: P-V Curve of Monocrystalline SPM100-M Model.
Figure 12: I-V Curve of Polycrystalline SPM020-P Model.

Figure 13: P-V Curve of Polycrystalline SPM020-P Model.
References

Creating continuous model review for material cement in Kirkuk plant when fuzzy and randomly demand with acceleration (speed up) waiting period by application.

Dr. Abdul muneem k. Hamadi Alshokri

Counting department – Madent Alelem College.

منشأة أنموذج مراجعة مستمرة لمخزون مادة السمنت في معمل كركوك عند ضبابية وعشوائية الطلب لتعجيل فترة الأنتظار مع تطبيق عملي.

أ.م. د. عبدالمؤمن كاظم حمادي الشكري
قسم المحاسبة – كلية مدينة العلم الجامعة

munaam53@yahoo.com
Abstract:

Many production companies suffering lot of problems concerning the management of inventory, especially in identify the amounts inventory should storage. In the actual market is very difficult to determine the precise value of the request for it to be random in most cases and that the adoption of these companies on the personal experiences and some of simple mathematical techniques leads to uncertainty determinant amounts of stock.

Where in this research create a model continuous for inventory due to demand is random fuzzy which has a fuzzy numbers for a following the trigonometric function for cement product which belong to cement plant Kirkuk at year 2015 and on a seasonal basis has been create a mathematical model after data distribution test which obtained upon request during the waiting period after removal of fuzzy where the test was using statistical program (spss) finding that distributed normally (normal distribution).

the research target to accelerate waiting period and identify the period which achieved highest economic typical quantitative by the lower expected cost with reduce the deficit and determine the best point to restore demand after conducting the required mathematical and statistical analyzes of the data by writing algorithm of proposed and It was using special mathematical criteria of quantitative methods in addition to the application importance and inventory effectiveness of the potential model in determining the economic quantities of production when the demand is random and fuzzy and reduced investment in inventories which leading to lower total costs of inventory to a minimum and so as to give solutions for research problem.

Key words: Continuous review of inventory, Fuzzy random demand Waiting time, Fuzzy trigonometric numbers.
المستخلص:
أن معظم الشركات الصناعية وشركات الأنتاج تتعرض للكثير من المشاكل المتعلقة بإنتاج وخزن وتسويق المنتج وخصائص فيما يتعلق بتحديد كميات المخزون الواقف الاحتياط بها. لذلك من الصعب عملا تحديدا قيمة دقيقة للطلب وذلك يكون للطلب عشوائي في معظم الأحيان ومن ذلك فإن اعتماد الشركات على الخبرات الشخصية وبعض الأساليب الرياضية التقليدية البسيطة ينتج عنه تحديد غير دقيق لكميات الخزين.

في هذا البحث تم إنشاء أنموذج مراجعة مستمرة للمخزون لكون الطلب عشوائي ضبابي ذو أرقام ضبابية، تطبع الدالة المثلثية لمنتج السمنت لمعلم سمنت كركوك لسنة (2015). وعلى أساس فصلي وتم إنشاء الأنموذج بعد اختيار توزيع البيانات المستحصل عليها للطلب خلال فترة الانتظار بعد أزالة الضبابية حيث تم الاختبار باستخدام البرنامج الإحصائي (spss) وتبين أنها تتوزع توزيع طبيعي (Normaldistribution).

ويهدف البحث إلى تعجيل فترة الانتظار وتحديد الفترة التي تحقق اعلى كمية اقتصادية مثلث للانتاج بالكلي كلفة متوافقة وتقليل العجز المتوقع وكذلك تحديد أفضل نقطة لإعادة الطلب وإجراء التحليلات الرياضية والاحصائية المطلوبة للبيانات لمضايقة خوارزمية للانموذج المقترح واستعمالا لمعيار حسابية خاصة بالإساليب الكمية ولذلك أنشأت اهمية تطبيق هذا الأنموذج وكيفيتها في الحد من الآثار الناجمة عن التقلبات البيئية التي تواجهها الشركة من خلال السيطرة على مستوى الطلب وكلف الاحتفاظ بالخزين فضلا عن اهمية تطبيق أنموذج الخزين. وبيان فعاليته في تحديد الكميات الاقتصادية مثلث للانتاج عندما تكون كميات الطلب الضبابية عشوائية وذلك سيتم تقليل الاحتفاظ في الخزين مما يؤدي انخفاض التكلفة الإجمالية للخزين إلى ادنى حد ممكن. وبذلك ستوجد حلولا مقتراحة لمشكلة البحث.

الكلمات المفتاحية: المراجعة المستمرة للمخزون، الطلب الضبابي العشوائي، وقت الانتظار، الأعداد الضبابية المثلثية.
1 -Introduction:

Are important teaks management of store things that cannot be dispensed with in all companies and factories, the fact that the stock represents a portion of the capital of the company or factory value ranges between 15-25% of the invested capital. So that the storage is to keep a certain determinant quantities according to a scientific study of a commodity or raw material for a period of time to wait for the sale or used with storage costs. In practice, demand for goods is variable depending on consumer demand for the types of goods, as well as the waiting time. It is also variable depending on the circumstances that may be encountered by the external supplier. This leads to delaying the arrival of applications in a timely manner in some cases. The need for the consumer and the costs of storage because the increase in inventory generates a problem because it leads to idle capital and exploitation of storage space without interest and the lack of inventory generates another problem leading to loss which generated by the company because of the inability to meet the actual demand of the consumer so The company's management is facing the problem of determining the optimal value of inventory and timely supply for the issuance of an order to suppliers and optimal quantity for each supply order.

In this research, an optimal model will be constructed to control the storage of cement for the Kirkuk plant for the year 2015 by studying the continuous review system of the reservoirs under the alternative of the random demand with a deficit due to the instability of the demand quantities and the uncertainties that prevail. Fuzzy logic for handling data uncertainties this logic will provide an easy and simple way to obtain specific conclusions from inaccurate and ambiguous data, and then the waiting time will be increased production and reduce the expected deficit as well as to determine the optimal waiting period that achieves the highest optimal economic quantity. Production at the
lowest total cost unexpected with lost fuzzy environment.

\[E[\tilde{\mathcal{X}}_L] \] The expected demand rate during the waiting period is fuzzy.

h: The cost of storage per ton during the season.

L: Wait time (variable decision), consisting of several components (i th) of the components of the minimum time () and the normal time of \(b_r \) with the cost of pressure per unit of time under the following assumption \(C1 \leq C2 \leq C3 \) The rang wait time is ()

\[L_r: \text{Length of waiting time with its components (r 1,2} \]

The waiting period is compressed for the minimum duration as follows:

\[L_n = \sum_{j=1}^{n} a_j \]

\[L_r = L_n + \sum_{k=r+1}^{n} (b_k - a_k) \]

For \(r = 0, 1, \ldots, n \)

\[b_r > a_r, L_{r-1} > L_r \]

Q: The economic size of the production quantity.

\[Q_r: \text{The economic size of the production quantity at the time of waiting (r).} \]

\[C_L: \text{The cost of compressing the waiting time for each cycle.} \]
\(B_r \): The amount of disability in each cycle.

\(B \): The percentage of applications that are not executed due to depletion of deposits, which can be accepted by the plant management, and between \((0 \leq B \leq 1)\)

\(\pi \): Cost of disability per ton.

\(\pi_0 \): Profit per ton.

\(\bar{\pi} \): Total loss resulting from unsatisfied demand

\[\bar{\pi} = \pi + (1 - B)\pi_0 \]

2 – 2 Mathematical formula:

From the assumptions above and given that a small portion of \((B)\) during the period of entry into stock can be deferred requests so the total cost will be extracted through the following formula:

\[C(Q, R, L) = \text{setup cost} + \text{holding cost} + \text{stock-out cost} + \text{lead-time crashing cost} \]

\[= A \frac{D}{Q} + h \left[\frac{Q}{Z} + R - E[x_L] + (1 - B)E[B_r] \right] + \frac{D}{Q} \left[\bar{\pi}E[B_r] \right] + \frac{D}{Q} \ldots \ldots (1) \]

\[= \frac{D}{Q} \left[A + \bar{\pi}E[B_r] \right] + h \left[\frac{Q}{Z} + R - E[x_L] + (1 - B)E[B_r] \right] \ldots \ldots \ldots (2) \]

Here the demand is considered as a random variable so the demand can be expressed vaguely and the total costs will be treated as a random variable so the cost function will be written as follows:

\[C(Q, R, L) = \frac{D}{Q} \left[A + \bar{\pi}E[\tilde{\chi}_L - R] \right] + h \left[\frac{Q}{Z} + R - E[\tilde{\chi}_L] + (1 - B)E[\tilde{\chi}_L - R] \right] \ldots \ldots (3) \]

\[E[B_r] = E[(\tilde{\chi}_L - R)] \]

The demand during the waiting period is different depending on the length of the waiting period in the uncertain environment, so the estimation of the demand during the waiting period is based on the
inaccurate perception, so the demand during the waiting period is fuzzy.

Whereas:

X: Demand weekly.

\(x_L = x_2L \)

\(0 \leq x_1 \leq x_2 \leq x_3 \)

Therefore, the expected value during the waiting period for the demand is fuzzy blurred and is extracted from the following equation:

\[
E[\bar{x}_L] = E[\bar{x}] * L
\]

\[
E[\bar{x}_L] = \frac{x_1 + 2 * x_2 + x_3}{4} \quad (4)
\]

The model of continuous review of reservoirs under the fuzzy random cloud environment is as follows:

\[
\hat{C}(Q,R,L) = \frac{\hat{E}}{q}[A + \pi E[(\bar{x}_L - R)^+] + C(L)] + h\left[\frac{Q}{z} + R - E[\bar{x}_L] + (1 - B)E[(\bar{x}_L - R)^+]\right] \quad (5)
\]

There are two cases to calculate the expected deficit when the re-demand point is within range:

R in \((x_1L, x_3L)\)

Provided that the re-order point is greater or equal to the expected demand during the waiting period

\[
R \geq E[\bar{x}_L]
\]

Cas1: \(R \in [x_1L, x_2L] \)

Re - order demand point as following figure:
The expected disability in this case can be derived from the following:

$$E(\bar{X} - R) = \int_{R}^{x_3L} (t - R)d\Phi(t) = \int_{R}^{x_2L} (t - R)d\Phi(t) + \int_{x_2L}^{x_3L} (t - R)d\Phi(t) \quad \text{(6)}$$

$$= \frac{2x_2L^2 - x_2L((x_1 - x_3)L + 4R) + 2Rx_1L + R^2 - x_1x_3L^2}{4(x_3 - x_1)L} \quad \text{(7)}$$

Whereas:

$$\Phi(t) = \begin{cases}
0 & \text{for } t \leq x_1L \\
\frac{t - x_1L}{2(x_2 - x_1)L} & \text{for } x_1L \leq t \leq x_2L \\
\frac{t + x_3L - 2x_2L}{2(x_3 - x_2)L} & \text{for } x_2L \leq t \leq x_3L \\
1 & \text{Otherwise}
\end{cases}$$

Assuming:

$$E(\bar{X}) = t$$

Hanes the expected total cost for storage when R € (Calculate by following formula When the total cost equation is derived for (Q):
We get the formula by calculate the optimal economic size.

\[
Q^2 = \sqrt{\frac{2E[\tilde{d}]}{h} \left[A + \tilde{\pi} \left(\frac{2x_2L^2 - x_2L(x_1 - x_3)L + 4R + 2Rx_1L + R^2 - x_1x_3L^2}{4(x_3 - x_1)L} \right) + C(L) \right]} \quad \text{... (9)}
\]

\[
Q = \frac{2E[\tilde{d}]}{h} \left[A + \tilde{\pi} \left(\frac{2x_2L^2 - x_2L(x_1 - x_3)L + 4R + 2Rx_1L + R^2 - x_1x_3L^2}{2(x_3 - x_1)L} \right) + C(L) \right] \quad \text{... (10)}
\]

Case 2: Let \(R \in (x_2, x_3) \)

Therefore, the total expected cost of storage when \(R \) calculated from the following formula as shown figure:
The expected disability in this case can be derived from the following formula:

\[E[(\bar{x}_L - R)^+] = \int_{R}^{x_3L} (t - R) \, d\Phi(t) \quad \ldots \ldots (11) \]

\[= \frac{(x_3L - R)^2}{4(x_3 - x_2)L} \quad \ldots (12) \]

The expected total cost of storage when \(R(\varepsilon) \) is calculated from the following formula:

\[E[\tilde{C}(Q, R)] = \frac{E[\tilde{d}]}{Q} \left[A + \frac{\pi}{4} \left(\frac{(x_3L - R)^2}{(x_3 - x_2)L} \right) + C(L) \right] + h \left[\frac{Q}{2} + R - E[\bar{x}_L] + (1 - B) \left(\frac{(x_3L - R)^2}{4(x_3 - x_2)L} \right) \right] \ldots (13) \]

When we derivative the total cost equation for(Q) we get:

\[\frac{\partial}{\partial Q} E[\tilde{C}(Q, R, L)] = 0 \]

From this we get the formula by calculated the optimal economic size.
\[Q^2 = \frac{2E[d]}{h} \left[A + \pi \left(\frac{(x_3L - R)^2}{4(x_3 - x_2)L} \right) \right] + C(L) \] ...

\[
Q = \sqrt{\frac{2E[d]}{h} \left[A + \pi \left(\frac{(x_3L - R)^2}{4(x_3 - x_2)L} \right) \right] + C(L)} \](15)

3 - Practical view:

1-3 Introduction:

For the purpose of applying the model of the problem in question has been relying on seasonal data for the year 2015, as the required data collected for the Cement Plant of Kirkuk - General Company for Iraqi Cement, for a period of one year and on a seasonal basis, which was obtained fuzzy quantity demand for the cement material where the first, third season data adoption for year (2015), as well as obtained the special costs of such material has been the cement industry relies on hageralklis, a raw material essential in the cement industry where interference by (75-80%)

percent in the ton industry One of the cement and al trabalhuid, hageralgebs, white oil and will be the process of mixing materials involved measured ratios globally scientifically and practically passing through malty process to produce the cement material.

2- 3 The model data:

The formulation of data demand weekly for the first seasonal (January, February and March), as indicated in the following table:
Table (1) shows the weekly demand during the first seasonal

<table>
<thead>
<tr>
<th>Months</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>$E[x]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First week</td>
<td>5209</td>
<td>5567</td>
<td>6144</td>
<td>5621.75</td>
</tr>
<tr>
<td>Second week</td>
<td>5114</td>
<td>5494</td>
<td>6038</td>
<td>5535</td>
</tr>
<tr>
<td>Third week</td>
<td>4928</td>
<td>5472</td>
<td>6006</td>
<td>5469.5</td>
</tr>
<tr>
<td>Fourth week</td>
<td>4833</td>
<td>5399</td>
<td>5904</td>
<td>5383.75</td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First week</td>
<td>4495</td>
<td>4769</td>
<td>5521</td>
<td>4888.5</td>
</tr>
<tr>
<td>Second week</td>
<td>4333</td>
<td>4536</td>
<td>5045</td>
<td>4612.5</td>
</tr>
<tr>
<td>Third week</td>
<td>4353</td>
<td>4719</td>
<td>5087</td>
<td>4719.5</td>
</tr>
<tr>
<td>Fourth week</td>
<td>4515</td>
<td>4952</td>
<td>5563</td>
<td>4995.5</td>
</tr>
<tr>
<td>Marche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First week</td>
<td>5764</td>
<td>6532</td>
<td>7035</td>
<td>6465.75</td>
</tr>
<tr>
<td>Second week</td>
<td>6168</td>
<td>6608</td>
<td>7003</td>
<td>6596.75</td>
</tr>
<tr>
<td>Third week</td>
<td>5657</td>
<td>6495</td>
<td>7145</td>
<td>6448</td>
</tr>
<tr>
<td>Fourth week</td>
<td>6275</td>
<td>6645</td>
<td>7177</td>
<td>6685.5</td>
</tr>
</tbody>
</table>

Source: Preparing the researcher based on the company records:

3-3 Distribution of the application during the waiting period:

When reviewing the statistical analysis of the demand during the waiting period for each chapter after removing the fuzzy using the following law $E[\bar{x}] = \text{It was found that the normal distribution is distributed where the data were tested by using the statistical program (SPSS).}$

Table (2) shows the normal distribution of the first chapter

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Statistic</td>
</tr>
<tr>
<td>The First Season</td>
</tr>
</tbody>
</table>

A Test distribution is Normal
b. Calculated from data
Figure (3) normal distribution of first seasonal

Table (3) shows the weekly demand rate during the first seasonal

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5139</td>
<td>5599</td>
<td>6139</td>
</tr>
</tbody>
</table>
Table (4) shows the probability of fuzzy demand during the seasonal.

<table>
<thead>
<tr>
<th>Demand</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = (70024, 70140, 70370))</td>
<td>0.15</td>
</tr>
<tr>
<td>(d_2 =)</td>
<td>0.18</td>
</tr>
<tr>
<td>(d_3 = (70070, 70130, 70221))</td>
<td>0.20</td>
</tr>
<tr>
<td>(d_4 = (70105, 70250, 70320))</td>
<td>0.22</td>
</tr>
<tr>
<td>(d_5 = (70150, 70330, 70400))</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table (5) shows the weekly demand during the second quarter (April, May, June)

<table>
<thead>
<tr>
<th>Months</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(E[X])</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First week</td>
<td>8566</td>
<td>8731</td>
<td>9544</td>
<td>8893</td>
</tr>
<tr>
<td>Second week</td>
<td>8433</td>
<td>8724</td>
<td>9540</td>
<td>8855.25</td>
</tr>
<tr>
<td>Third week</td>
<td>8280</td>
<td>8635</td>
<td>9216</td>
<td>8692.5</td>
</tr>
<tr>
<td>Fourth week</td>
<td>8413</td>
<td>8642</td>
<td>9220</td>
<td>8729.25</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First week</td>
<td>8701</td>
<td>9217</td>
<td>9908</td>
<td>9260.75</td>
</tr>
<tr>
<td>Second week</td>
<td>8569</td>
<td>9276</td>
<td>10239</td>
<td>9340</td>
</tr>
<tr>
<td>Third week</td>
<td>8357</td>
<td>9045</td>
<td>9423</td>
<td>8967.5</td>
</tr>
<tr>
<td>Fourth week</td>
<td>8913</td>
<td>8986</td>
<td>9754</td>
<td>9159.75</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First week</td>
<td>6413</td>
<td>6743</td>
<td>7620</td>
<td>6879.75</td>
</tr>
<tr>
<td>Second week</td>
<td>6457</td>
<td>7003</td>
<td>7832</td>
<td>7073.75</td>
</tr>
<tr>
<td>Third week</td>
<td>6348</td>
<td>6796</td>
<td>7638</td>
<td>6943</td>
</tr>
<tr>
<td>Fourth week</td>
<td>6522</td>
<td>6950</td>
<td>7814</td>
<td>7059</td>
</tr>
</tbody>
</table>

Source: Preparing the researcher based on the company records
Table (6) shows the normal distribution of second seasonal

<table>
<thead>
<tr>
<th>The Second Season</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Sum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>6879.75</td>
<td>9340.00</td>
<td>99853.50</td>
<td>8321.1250</td>
<td>1003.83828</td>
</tr>
</tbody>
</table>

a. Test distribution is Normal.
b. Calculated from data

![Histogram](Image)

Figure (4) normal distribution of second seasonal
Table (7) shows the average weekly demand during the second seasonal

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7831</td>
<td>8229</td>
<td>8979</td>
</tr>
</tbody>
</table>

Table (8) shows the probability fuzzy probability demand average during

<table>
<thead>
<tr>
<th>Demand</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 =)</td>
<td>0.27</td>
</tr>
<tr>
<td>(d_2 = (94010,96994,97530))</td>
<td>0.24</td>
</tr>
<tr>
<td>(d_3 = (91989,92250,93122))</td>
<td>0.19</td>
</tr>
<tr>
<td>(d_4 = (90928,92835,93202))</td>
<td>0.16</td>
</tr>
<tr>
<td>(d_5 =)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Source: Preparing the researcher based on the company records

Table (9) shows the costs used in the model

<table>
<thead>
<tr>
<th>Season</th>
<th>cost</th>
<th>(\alpha)</th>
<th>(H)</th>
<th>(\beta)</th>
<th>(\bar{\pi})</th>
<th>(\pi_0)</th>
<th>(\pi)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>First season</td>
<td>0.35</td>
<td>4500</td>
<td>0.2</td>
<td>20100</td>
<td>20125</td>
<td>4000</td>
<td>16362192</td>
<td></td>
</tr>
<tr>
<td>Second season</td>
<td>0.4</td>
<td>4500</td>
<td>0.4</td>
<td>16075</td>
<td>20125</td>
<td>4000</td>
<td>21942309</td>
<td></td>
</tr>
</tbody>
</table>

Table (10) shows the components of the waiting time

<table>
<thead>
<tr>
<th>Contents waiting time</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal time</td>
<td>15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Reduce time</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Crash cost</td>
<td>297000</td>
<td>300000</td>
<td>365000</td>
</tr>
</tbody>
</table>
5-Model Algorithm:

First step:

Calculate the length of the waiting period (\(L_r\)) with the compression of its components to the maximum of normal time by applying the following formula: (5)

\[
L_n = \sum_{j=1}^{n} a_j
\]

\[
L_r = L_n + \sum_{k=r+1}^{n} (b_k-a_k)
\]

\(L_0 = 35\) days (5 weeks)

\(L_1 = 35 - 7 = 28\) days (4 weeks)

\(L_2 = 28 - 7 = 21\) days (3 weeks)

\(L_3 = 21 - 7 = 14\) days (2 weeks)

and

\[\min_{0 \leq r \leq n} L_r = 2\ \text{weeks}\]

\[\max_{0 \leq r \leq n} L_r = 5\ \text{weeks}\]

Table (11) shows reduced waiting periods

<table>
<thead>
<tr>
<th>R</th>
<th>(L_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Second step:
Calculate expected demand during the waiting period through the following formula:

\[E[\bar{x}_L] = E[\bar{x}] \times L_r \]

\[E[\bar{x}] = \frac{x_1 + 2 \times x_2 + x_3}{4} \]

Third step:
Calculate the standard deviation of the demand during the waiting period by the following formula:

Whereas:

\[\overline{X} = \frac{\sum x_i}{n} \]

Fourth step:
Calculate the Redemption Point (R) through the following formula:

\[R = E[\bar{x}] \times L_r + \sqrt{L_r} \times B \times K_{ai} \]

Fifth Step:
Calculate the degree of affiliation of the application during the waiting period through the following formula:

\[
\mu(x) = \begin{cases}
\frac{E(x)L - x_1L}{x_2L - x_1L} & \text{for } x_1L \leq E(x)L \leq x_2L \\
\frac{E(x)L - x_3L}{x_2L - x_3L} & \text{for } x_2L \leq E(x)L \leq x_3L \\
0 & \text{otherwise}
\end{cases}
\]

Sixth Step:
Calculate expected deficit of demand during the waiting period.

Case (1) if \(R \in (x_1L, x_2L) \)
The expected deficit is calculated by applying equation (7).

Case (2) if $Re(x_2L, x_3L)$

The expected deficit is calculated using the equation (12).

Seventh step:

Calculate expected demand during the quarter by the following formula:

$$E[\bar{d}] = \sum_{i=1}^{R} E[\bar{di}] * Pi$$

whereas:

$$E[di] = \frac{(di1 + (di2 + 2) + di3)}{4}$$

Eighth Step:

Calculate the cost of pressure $C(L)$ through the following law:

$$C(L) = Cr(L_{r-1} - L) + \sum_{K=1}^{r-1} C_K(b_k - c_k)$$

Table (12) shows the calculation of the cost of accelerating (speed up) the waiting time

<table>
<thead>
<tr>
<th>R</th>
<th>C(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>297000(35 - 1) = 10395000 - 297000L for 35 ≥ L</td>
</tr>
<tr>
<td>2</td>
<td>300000(28 - 1) + 297000 * 7 = 8400000 - 300000L + 2079000 for 28 ≤ L</td>
</tr>
<tr>
<td>3</td>
<td>365000</td>
</tr>
</tbody>
</table>

Table (13) shows the cost of accelerating the waiting time for each stag

<table>
<thead>
<tr>
<th>Crash lead –time</th>
<th>Lr</th>
<th>C(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2079000</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4179000</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6734000</td>
</tr>
</tbody>
</table>
Ninth Step:

The economic size of the production quantities is calculated by the following formula:

CAS 1: IF \(R \in (X_1, X_2) \) By applying equation (10).

CAS 2: IF \(R \in (X_2 L, X_3 L) \) By applying equation (15).

Tenth Step:

Calculate the expected total cost of the storage through the following formula:

CAS 1: IF \(R \in \) By applying equation (8):

CAS 2: IF \(R \in (X_2 L, X_3 L) \) By applying equation (13):

Table (14) shows the optimal solution for third seasonal.

<table>
<thead>
<tr>
<th>Crash lead – time</th>
<th>L</th>
<th>MC</th>
<th>Q</th>
<th>R</th>
<th>SHORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>125969228.6</td>
<td>27080.8</td>
<td>28736.91</td>
<td>355</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>125934942.5</td>
<td>27205.51</td>
<td>23050.38</td>
<td>262.37</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>12461077805</td>
<td>27392.42</td>
<td>17354.66</td>
<td>174.16</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>127628443.6</td>
<td>27912.32</td>
<td>11644.56</td>
<td>92.88</td>
</tr>
</tbody>
</table>
Table (15) shows the best solution for fourth seasonal.

<table>
<thead>
<tr>
<th>Crash lead – time</th>
<th>L</th>
<th>MC</th>
<th>Q</th>
<th>R</th>
<th>SHORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>163412924.4</td>
<td>35425.56</td>
<td>42149</td>
<td>502</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1631809618</td>
<td>35515.67</td>
<td>33772.5</td>
<td>382.88</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>163221426.9</td>
<td>35651.2</td>
<td>25387.9</td>
<td>266.6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>164597679.6</td>
<td>36103.38</td>
<td>16990.7</td>
<td>155.94</td>
</tr>
</tbody>
</table>

6 - Results:

The table (14) show us that the best waiting period is when $(L = 3)$ a week, (21 days), which is to accelerate the waiting period for two (14) days, meaning that we can only accelerate the components of the first and second waiting period. (27392.42) tons, or about (27392) tons during this period at the lowest total cost expected by (12461077805) dinars and the point of re-demand is when the stock reaches (17354.66) tons, or about (17355) tons with an attempt to reduce the amount. The expected deficit to (174.16) tons or about (174) tons during this period of this seasonal (third seasonal), while for the second seasonal, the economic quantity of the (35651.2) tons (35651) tons when the waiting period $(L = 3)$ a week is the best waiting period because it achieves the highest quantity at the lowest total cost expected by (163221426.9) dinars and the point of re-demand is when the stock reaches (25387.9) tons. And that the expected deficit during this period is (266.6) tons during the waiting period for this seasonal (fourth seasonal).

7 – Conclusions:

1-The company does not adopt the scientific methods in determining the actual quantities of demand for the cement product. An annual plan is drawn up based on personal estimates.

2-The use of fuzzy logic in inventory management is more effective and flexible for decision makers in determining the
optimal quantities of traditional methods.

3-Through the study and analysis it became clear that the demand for the cement product is affected by the seasonal factors in its fluctuations due to the adoption of most companies on personal experience and some simple mathematical methods that lead to the identification of inaccurate amounts of storage, because in practice it is difficult to determine the exact value of the request, The demand is often vague.

8 - Recommendations:

1 -Conducting studies in the field of inventory management in the with a random and fuzzy environment and applying it to productive companies in Iraq because they lack inventory systems based on modern methods and methods of inventory management.

2- Adoption of modern scientific methods in determining the optimal economic volume of demand or production to develop a seasonally plan or annual study.

3-Using the applications of the theory of aggregates fuzzy in various areas to remove the uncertainty and volatility that prevail in the Iraqi production environment.

4- Develop seasonally and annual plans using modern scientific methods in determining the economic quantities of production.

References:

3-Jassem, Abdullah Basim "Best strategy for management of fuzzy inventory applied research in the Baghdad Company for soft drinks," Master Baghdad
University, Faculty of Management and Economics, 2016.

